Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre R. Bonneau is active.

Publication


Featured researches published by Pierre R. Bonneau.


Nature | 2003

An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus

Daniel Lamarre; Paul C. Anderson; Murray D. Bailey; Pierre L. Beaulieu; Gordon Bolger; Pierre R. Bonneau; Michael Bös; Dale R. Cameron; Mireille Cartier; Michael G. Cordingley; Anne-Marie Faucher; Nathalie Goudreau; Stephen H. Kawai; George Kukolj; Lisette Lagacé; LaPlante; Narjes H; Poupart Ma; Jean Rancourt; Sentjens Re; St George R; Bruno Simoneau; Gerhard Steinmann; Diane Thibeault; Youla S. Tsantrizos; Weldon Sm; Chan-Loi Yong; Montse Llinas-Brunet

Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.


Pharmaceutical Research | 2013

Human Intestinal Transporter Database: QSAR Modeling and Virtual Profiling of Drug Uptake, Efflux and Interactions

Alexander Sedykh; Denis Fourches; Jianmin Duan; Oliver Hucke; Michel Garneau; Hao Zhu; Pierre R. Bonneau; Alexander Tropsha

PurposeMembrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles.MethodsUsing public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1.ResultsQSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71–100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds.ConclusionsThe compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly.

Lee Fader; Richard C. Bethell; Pierre R. Bonneau; Michael Bös; Yves Bousquet; Michael G. Cordingley; René Coulombe; Patrick Deroy; Anne-Marie Faucher; Alexandre Gagnon; Nathalie Goudreau; Chantal Grand-Maitre; Ingrid Guse; Oliver Hucke; Stephen H. Kawai; Jean-Eric Lacoste; Serge Landry; Christopher T. Lemke; Eric Malenfant; Stephen W. Mason; Sébastien Morin; Jeff O’Meara; Bruno Simoneau; Steve Titolo; Christiane Yoakim

The discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly is described. Synthesis of analogs of the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione hit established structure-activity relationships. Replacement of the enamine functionality of the hit series with either an imidazole or a pyrazole ring led to compounds that inhibited both capsid assembly and reverse transcriptase. Optimization of the bicyclic benzodiazepine scaffold to include a 3-phenyl substituent led to lead compound 48, a pure capsid assembly inhibitor with improved antiviral activity.


Journal of Medicinal Chemistry | 2013

Compound Aggregation in Drug Discovery: Implementing a Practical NMR Assay for Medicinal Chemists

Steven R. LaPlante; Rebekah Carson; James Gillard; René Coulombe; Sylvain Bordeleau; Pierre R. Bonneau; Michael Little; Jeff O’Meara; Pierre L. Beaulieu

The pharmaceutical industry has recognized that many drug-like molecules can self-aggregate in aqueous media and have physicochemical properties that skew experimental results and decisions. Herein, we introduce the use of a simple NMR strategy for detecting the formation of aggregates using dilution experiments that can be performed on equipment prevalent in most synthetic chemistry departments. We show that (1)H NMR resonances are sensitive to large molecular-size entities and to smaller multimers and mixtures of species. Practical details are provided for sample preparation and for determining the concentrations of single molecule, aggregate entities, and precipitate. The critical concentrations above which aggregation begins can be found and were corroborated by comparisons with light scattering techniques. Disaggregation can also be monitored using detergents. This NMR assay should serve as a practical and readily available tool for medicinal chemists to better characterize how their compounds behave in aqueous media and influence drug design decisions.


Bioorganic & Medicinal Chemistry Letters | 2009

Investigation on the role of the tetrazole in the binding of thiotetrazolylacetanilides with HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases.

Alexandre Gagnon; Serge Landry; René Coulombe; Araz Jakalian; Ingrid Guse; Bounkham Thavonekham; Pierre R. Bonneau; Christiane Yoakim; Bruno Simoneau

The role of the tetrazole moiety in the binding of aryl thiotetrazolylacetanilides with HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases was explored. Different acyclic, cyclic and heterocyclic replacements were investigated in order to evaluate the conformational and electronic contribution of the tetrazole ring to the binding of the inhibitors in the NNRTI pocket. The replacement of the tetrazole by a pyrazolyl group led to reversal of selectivity, providing inhibitors with excellent potency against the double mutant reverse transcriptase.


Antimicrobial Agents and Chemotherapy | 2014

Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic Site Integrase Inhibitor

Craig Fenwick; Ma’an Amad; Murray D. Bailey; Richard C. Bethell; Michael Bös; Pierre R. Bonneau; Michael G. Cordingley; René Coulombe; Jianmin Duan; Paul Edwards; Lee Fader; Anne-Marie Faucher; Michel Garneau; Araz Jakalian; Stephen H. Kawai; Louie Lamorte; Steven R. LaPlante; Laibin Luo; Steve Mason; Marc-André Poupart; Nathalie Rioux; Patricia Schroeder; Bruno Simoneau; Sonia Tremblay; Youla S. Tsantrizos; Myriam Witvrouw; Christiane Yoakim

ABSTRACT BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Bioorganic & Medicinal Chemistry Letters | 2000

NMR line-broadening and transferred NOESY as a medicinal chemistry tool for studying inhibitors of the hepatitis C virus NS3 protease domain

Steven R. LaPlante; Pierre R. Bonneau; George Kukolj; Daniel Lamarre; Sylvain Lefebvre; Hong Li; Montse Llinas-Brunet; Céline Plouffe; Dale R. Cameron

This work describes the use of NMR as a medicinal chemistry tool for better understanding the binding characteristics of inhibitors of the HCV NS3 protease. The protease-bound structure of a tetrapeptide-like inhibitor that has an acid C-terminus, a norvaline at P1 and a naphthylmethoxy proline at P2 is described. Conformational comparisons are made with a similar compound having a 1-amino-cyclopropylcarboxylic acid at P1 and with a hexapeptide inhibitor. Differences between the free and bound states are identified. 19F NMR also helped in determining that a single complex is observed when an inhibitor is added to the protease at a 1:1 ratio.


Journal of Molecular Biology | 2013

Discovery and Structural Characterization of a New Inhibitor Series of HIV-1 Nucleocapsid Function: NMR Solution Structure Determination of a Ternary Complex Involving a 2:1 Inhibitor/NC Stoichiometry.

Nathalie Goudreau; Oliver Hucke; Anne-Marie Faucher; Chantal Grand-Maitre; Olivier Lepage; Pierre R. Bonneau; Stephen W. Mason; Steve Titolo

The nucleocapsid (NC) protein is an essential factor with multiple functions within the human immunodeficiency virus type 1 (HIV-1) replication cycle. In this study, we describe the discovery of a novel series of inhibitors that targets HIV-1 NC protein by blocking its interaction with nucleic acids. This series was identified using a previously described capsid (CA) assembly assay, employing a recombinant HIV-1 CA-NC protein and immobilized TG-rich deoxyoligonucleotides. Using visible absorption spectroscopy, we were able to demonstrate that this new inhibitor series binds specifically and reversibly to the NC with a peculiar 2:1 stoichiometry. A fluorescence-polarization-based binding assay was also developed in order to monitor the inhibitory activities of this series of inhibitors. To better characterize the structural aspect of inhibitor binding onto NC, we performed NMR studies using unlabeled and (13)C,(15)N-double-labeled NC(1-55) protein constructs. This allowed the determination of the solution structure of a ternary complex characterized by two inhibitor molecules binding to the two zinc knuckles of the NC protein. To the best of our knowledge, this represents the first report of a high-resolution structure of a small-molecule inhibitor bound to NC, demonstrating sub-micromolar potency and moderate antiviral potency with one analogue of the series. This structure was compared with available NC/oligonucleotide complex structures and further underlined the high flexibility of the NC protein, allowing it to adopt many conformations in order to bind its different oligonucleotide/nucleomimetic targets. In addition, analysis of the interaction details between the inhibitor molecules and NC demonstrated how this novel inhibitor series is mimicking the guanosine nucleobases found in many reported complex structures.


Journal of Medicinal Chemistry | 2013

Monitoring Drug Self-Aggregation and Potential for Promiscuity in Off-Target In Vitro Pharmacology Screens by a Practical NMR Strategy

Steven R. LaPlante; Gordon Bolger; Pierre R. Bonneau; Rebekah Carson; René Coulombe; Claudio Sturino; Pierre L. Beaulieu

A simple NMR assay was applied to monitor the tendency of compounds to self-aggregate in aqueous media. The observation of unusual spectral trends as a function of compound concentration appears to be signatory of the formation of self-assemblies. (1)H NMR resonances of aggregating compounds were sensitive to the presence of a range of molecular assemblies in solution including large molecular-size entities, smaller multimers, and mixtures of assembled species. The direct observation of aggregates via unusual NMR spectra also correlated with promiscuous behavior of molecules in off-target in vitro pharmacology assays. This empirical assay can have utility for predicting compound promiscuity and should complement predictive methods that principally rely on the computing of descriptors such as lipophilicity (cLogP) and topological surface area (TPSA). This assay should serve as a practical tool for medicinal chemists to monitor compound attributes in aqueous solution and various pharmacologically relevant media, as demonstrated herein.


ChemMedChem | 2010

Development of Specific “Drug‐Like Property” Rules for Carboxylate‐Containing Oral Drug Candidates

Alexander Böcker; Pierre R. Bonneau; Oliver Hucke; Araz Jakalian; Paul Edwards

The carboxylate moiety is an important pharmacophore in the medicinal chemists arsenal and is sometimes an irreplaceable functionality in drug–target interactions. Thus, practical guidance on its use in the most optimized manner would be a welcome addition to rational drug design. Key physicochemical and ADMET‐PK properties from a dataset of drugs containing a carboxylate (COOH) moiety were assembled and compared with those of a broader, general drug dataset. Our main objective was to identify features specific to COOH‐containing oral drugs that could be converted into simple rules delineating the boundaries within which prospective COOH‐containing chemical series and COOH‐containing drug candidates would be reasonably expected to possess properties suitable for oral administration. These specific “drug‐like” property rules include molecular weight, the number of rotatable bonds, the number of hydrogen bond donors and acceptors, predictions of lipophilic character (calculated log P and log D values), topological polar surface area (TPSA), and the pKa value of the carboxylate moiety. Similar to the various sets of criteria that have emerged over the past decade and which have significantly reshaped the way medicinal chemists think about preferred drug chemical space, we propose these specific COOH “drug‐like” property rules as a guide for the design of superior COOH‐containing drug candidates and as a tool to better manage the liabilities generally associated with the presence of a COOH moiety.

Collaboration


Dive into the Pierre R. Bonneau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Coulombe

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge