Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen H. Kawai is active.

Publication


Featured researches published by Stephen H. Kawai.


Nature | 2003

An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus

Daniel Lamarre; Paul C. Anderson; Murray D. Bailey; Pierre L. Beaulieu; Gordon Bolger; Pierre R. Bonneau; Michael Bös; Dale R. Cameron; Mireille Cartier; Michael G. Cordingley; Anne-Marie Faucher; Nathalie Goudreau; Stephen H. Kawai; George Kukolj; Lisette Lagacé; LaPlante; Narjes H; Poupart Ma; Jean Rancourt; Sentjens Re; St George R; Bruno Simoneau; Gerhard Steinmann; Diane Thibeault; Youla S. Tsantrizos; Weldon Sm; Chan-Loi Yong; Montse Llinas-Brunet

Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.


Journal of Medicinal Chemistry | 2010

Discovery of a potent and selective noncovalent linear inhibitor of the hepatitis C virus NS3 protease (BI 201335).

Montse Llinas-Brunet; Murray D. Bailey; Nathalie Goudreau; Punit Bhardwaj; Josée Bordeleau; Michael Bös; Yves Bousquet; Michael G. Cordingley; Jiamin Duan; Pat Forgione; Michel Garneau; Elise Ghiro; Vida Gorys; Sylvie Goulet; Ted Halmos; Stephen H. Kawai; Julie Naud; Marc-André Poupart; Peter W. White

C-Terminal carboxylic acid containing inhibitors of the NS3 protease are reported. A novel series of linear tripeptide inhibitors that are very potent and selective against the NS3 protease are described. A substantial contribution to the potency of these linear inhibitors arises from the introduction of a C8 substituent on the B-ring of the quinoline moiety found on the P2 of these inhibitors. The introduction of a C8 methyl group results not only in a modest increase in the cell-based potency of these inhibitors but more importantly in a much better pharmacokinetic profile in rats as well. Exploration of C8-substitutions led to the identification of the bromo derivative as the best group at this position, resulting in a significant increase in the cell-based potency of this class of inhibitors. Structure-activity studies on the C8-bromo derivatives ultimately led to the discovery of clinical candidate 29 (BI 201335), a very potent and selective inhibitor of genotype1 NS3 protease with a promising PK profile in rats.


Journal of The Chemical Society, Chemical Communications | 1993

Light-triggered electrical and optical switching devices

Sylvain L. Gilat; Stephen H. Kawai; Jean-Marie Lehn

The functional photoswitchable systems 1–3 and 12–15 display pronounced photochromic properties; the bis-pyridinium derivative 1 represents a prototype of a switched molecular wire which may be converted from an open unconjugated form to a closed electron-conducting state.


Journal of Virology | 2012

Distinct effects of two HIV-1 capsid assembly inhibitor families that bind the same site within the N-terminal domain of the viral CA protein

Christopher T. Lemke; Steve Titolo; Uta K. von Schwedler; Nathalie Goudreau; Jean‐François Mercier; Elizabeth Wardrop; Anne Marie Faucher; René Coulombe; Soma S.R. Banik; Lee Fader; Alexandre Gagnon; Stephen H. Kawai; Jean Rancourt; Martin Tremblay; Christiane Yoakim; Bruno Simoneau; Jacques Archambault; Wesley I. Sundquist; Stephen W. Mason

ABSTRACT The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall stability of the viral capsid without affecting inhibitor binding. These studies demonstrate that CA is a viable antiviral target and demonstrate that inhibitors that bind within the same site on CA can have distinct binding modes and mechanisms of action.


Journal of The Chemical Society, Chemical Communications | 1994

A dual-mode optical–electrical molecular switching device

Stephen H. Kawai; Sylvain L. Gilat; Jean-Marie Lehn

The triad of compounds 1a, 1b and 2 represents a dual-mode molecular switching device for which photochromic and electrochemical properties are mutually regulated and which may form the basis for write–read–erase optoelectronic information handling processes.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly.

Lee Fader; Richard C. Bethell; Pierre R. Bonneau; Michael Bös; Yves Bousquet; Michael G. Cordingley; René Coulombe; Patrick Deroy; Anne-Marie Faucher; Alexandre Gagnon; Nathalie Goudreau; Chantal Grand-Maitre; Ingrid Guse; Oliver Hucke; Stephen H. Kawai; Jean-Eric Lacoste; Serge Landry; Christopher T. Lemke; Eric Malenfant; Stephen W. Mason; Sébastien Morin; Jeff O’Meara; Bruno Simoneau; Steve Titolo; Christiane Yoakim

The discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly is described. Synthesis of analogs of the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione hit established structure-activity relationships. Replacement of the enamine functionality of the hit series with either an imidazole or a pyrazole ring led to compounds that inhibited both capsid assembly and reverse transcriptase. Optimization of the bicyclic benzodiazepine scaffold to include a 3-phenyl substituent led to lead compound 48, a pure capsid assembly inhibitor with improved antiviral activity.


Tetrahedron Letters | 1998

Photochromic bis(monoaza-crown ether)s. Alkali-metal cation complexing properties of novel diarylethenes

Stephen H. Kawai

The novel bis(monoaza-crown ether) diarylethenes 1 and 2 have been synthesized and their photochromism and the ion-complexation properties of both photoisomers have been investigated.


Antimicrobial Agents and Chemotherapy | 2014

Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic Site Integrase Inhibitor

Craig Fenwick; Ma’an Amad; Murray D. Bailey; Richard C. Bethell; Michael Bös; Pierre R. Bonneau; Michael G. Cordingley; René Coulombe; Jianmin Duan; Paul Edwards; Lee Fader; Anne-Marie Faucher; Michel Garneau; Araz Jakalian; Stephen H. Kawai; Louie Lamorte; Steven R. LaPlante; Laibin Luo; Steve Mason; Marc-André Poupart; Nathalie Rioux; Patricia Schroeder; Bruno Simoneau; Sonia Tremblay; Youla S. Tsantrizos; Myriam Witvrouw; Christiane Yoakim

ABSTRACT BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Journal of Medicinal Chemistry | 2014

Ligand bioactive conformation plays a critical role in the design of drugs that target the hepatitis C virus NS3 protease.

Steven R. LaPlante; Herbert Nar; Christopher T. Lemke; Araz Jakalian; Stephen H. Kawai

A ligand-focused strategy employed NMR, X-ray, modeling, and medicinal chemistry to expose the critical role that bioactive conformation played in the design of a variety of drugs that target the HCV protease. The bioactive conformation (bound states) were determined for key inhibitors identified along our drug discovery pathway from the hit to clinical compounds. All adopt similar bioactive conformations for the common core derived from the hit peptide DDIVPC. A carefully designed SAR analysis, based on the advanced inhibitor 1 in which the P1 to P3 side chains and the N-terminal Boc were sequentially truncated, revealed a correlation between affinity and the relative predominance of the bioactive conformation in the free state. Interestingly, synergistic conformation effects on potency were also noted. Comparisons with clinical and recently marketed drugs from the pharmaceutical industry showed that all have the same core and similar bioactive conformations. This suggested that the variety of appendages discovered for these compounds also properly satisfy the bioactive conformation requirements and allowed for a large variety of HCV protease drug candidates to be designed.


Antiviral Chemistry & Chemotherapy | 1998

Potent β-Lactam Inhibitors of Human Cytomegalovirus Protease:

Christiane Yoakim; William W. Ogilvie; Cameron; Catherine Chabot; Chantal Grand-Maitre; Ingrid Guse; Bruno Haché; Stephen H. Kawai; Julie Naud; Jeff O'Meara; Raymond Plante; Robert Deziel

A series of novel monobactam inhibitors of human cytomegalovirus (HCMV) protease has been described that possess a heterocyclic thiomethyl side chain at C-4. Changes to the heterocycle did not significantly change the inhibitory activity of these compounds in an enzymatic assay, although improvements in solubility and cell culture activity were noted. A number of permutations between C-4 substitutions and N-1 derivatives led to the identification of several β-lactams with antiviral activity in a plaque reduction assay. N-methyl thiotetrazole-containing compounds were found to be the most potent inhibitors in the enzymatic assay.

Collaboration


Dive into the Stephen H. Kawai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge