Pierre Rochus
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Rochus.
Solar Physics | 1995
J.-P. Delaboudiniere; G. E. Artzner; J. Brunaud; A. H. Gabriel; Jean-François Hochedez; F. Millier; Xueyan Song; B. Au; K. P. Dere; Russell A. Howard; R. W. Kreplin; D. J. Michels; John Daniel Moses; Jean-Marc Defise; Claude Jamar; Pierre Rochus; J. P. Chauvineau; J. P. Marioge; R. C. Catura; James R. Lemen; L. Shing; R. A. Stern; Joseph B. Gurman; W. M. Neupert; Andre J. Maucherat; F. Clette; P. Cugnon; E. L. Van Dessel
The Extreme-ultraviolet Imaging Telescope (EIT) will provide wide-field images of the corona and transition region on the solar disc and up to 1.5 R⊙ above the solar limb. Its normal incidence multilayer-coated optics will select spectral emission lines from Fe IX (171 Å), Fe XII (195 Å), Fe XV (284 Å), and He II (304 Å) to provide sensitive temperature diagnostics in the range from 6 × 104 K to 3 × 106 K. The telescope has a 45 x 45 arcmin field of view and 2.6 arcsec pixels which will provide approximately 5-arcsec spatial resolution. The EIT will probe the coronal plasma on a global scale, as well as the underlying cooler and turbulent atmosphere, providing the basis for comparative analyses with observations from both the ground and other SOHO instruments. This paper presents details of the EIT instrumentation, its performance and operating modes.
Space Science Reviews | 2000
Stephen B. Mende; H. Heetderks; Harald U. Frey; Michael L. Lampton; S. P. Geller; Serge Habraken; Etienne Renotte; Claude Jamar; Pierre Rochus; J. F. Spann; S. A. Fuselier; Jean-Claude Gérard; R. Gladstone; S. Murphree; L. L. Cogger
Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora, the footprint of magnetospheric regions. To assure the simultaneity of these observations and the measurement of the magnetospheric background neutral gas density, the IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. In the wavelength region 120-190 nm, a downward-viewing auroral imager is only minimally contaminated by sunlight, scattered from clouds and ground, and radiance of the aurora observed in a nadir viewing geometry can be observed in the presence of the high-latitude dayglow. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a monochromatic imager, will image different types of aurora, filtered by wavelength. By measuring the Doppler-shifted Ly-α, the proton-induced component of the aurora will be imaged separately. Finally, the GEO instrument will observe the distribution of the geocoronal emission, which is a measure of the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. Detailed descriptions of the WIC, SI, GEO, and their individual performance validations are discussed in companion papers. This paper summarizes the system requirements and system design approach taken to satisfy the science requirements. One primary requirement is to maximize photon collection efficiency and use efficiently the short time available for exposures. The FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, multiple images are taken and electronically co-added by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distortion-corrected in real time for both WIC and SI prior to co-adding. The distortion correction is accomplished using high speed look up tables that are pre-generated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationery platforms, mostly in vacuum chambers as described in the companion papers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to estimate their on-orbit performance. The predicted instrument system performance is summarized and some of the preliminary data formats are shown.
Astronomy and Astrophysics | 2003
J. M. Mas-Hesse; Alvaro Gimenez; J. L. Culhane; Claude Jamar; Brian McBreen; J. Torra; R. Hudec; J. Fabregat; E. Meurs; Jean-Pierre Swings; M. A. Alcacera; A. Balado; R. Beiztegui; T. Belenguer; L. J. Bradley; M. D. Caballero; P. Cabo; Jean-Marc Defise; E. Díaz; A. Domingo; F. Figueras; I. Figueroa; L. Hanlon; F. Hroch; V. Hudcova; T. Garcia; B. Jordan; C. Jordi; P. Kretschmar; C. Laviada
The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gamma- ray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: (1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and (2) to provide the brightness and position of the optical counterpart of any gamma- or X-ray transient taking place within its field of view. The OMC is based on a refractive optics with an aperture of 50 mm focused onto a large format CCD (1024 2048 pixels) working in frame transfer mode (1024 1024 pixels imaging area). With a field of view of 5 5 it will be able to monitor sources down to magnitude V = 18. Typical observations will perform a sequence of dierent integration times, allowing for photometric uncertainties below 0.1 mag for objects with V 16.
Nuclear Physics | 1981
Martine Jaminon; C. Mahaux; Pierre Rochus
Abstract A relativistic Hartree-Fock mean field approximation is investigated in a model in which the nucleon field interacts with scalar and vector meson fields. The Hartree-Fock potential felt by individual nucleons enters in a relativistic Dirac single-particle equation. It is shown that in the case of symmetric nuclear matter one can always find a potential which is fully equivalent to the most general mean field and which is only the sum of a Lorentz scalar, of one component of a Lorentz tensor and of the fourth component of a Lorentz vector. A non-relativistic potential is derived which yields exactly the same single-particle energies and elastic scattering phase shifts as the relativistic Hartree-Fock potential. Analytical results are presented in the case of nuclear matter. A local density approximation is constructed which enables one to consider finite nuclei. The input parameters of the model can be chosen in such a way that the empirical saturation properties of nuclear matter are well reproduced. Good agreement is obtained between the calculated non-relativistic potential and the empirical value of the real part of the optical-model potential at low and at intermediate energy. At intermediate energy, the wine-bottle bottom shape which had previously been found for the potential in the framework of the relativistic Hartree approximation is maintained when the Fock contribution is included.
Experimental Astronomy | 2012
Hardi Peter; L. Abbo; V. Andretta; F. Auchère; A. Bemporad; F. Berrilli; V. Bommier; Andy Braukhane; Roberto Casini; W. Curdt; Joseph M. Davila; H. Dittus; Silvano Fineschi; A. Fludra; A. Gandorfer; D. Griffin; B. Inhester; A. Lagg; E. Landi Degl'Innocenti; Volker Maiwald; R. Manso Sainz; V. Martínez Pillet; S. Matthews; D. Moses; Susanna Parenti; A. Pietarila; Dominik Quantius; N.-E. Raouafi; J. Raymond; Pierre Rochus
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.
Proceedings of SPIE | 2013
Russell A. Howard; Angelos Vourlidas; C. M. Korendyke; Simon P. Plunkett; Michael T. Carter; N. B. Rich; Donald R. McMullin; Sean Lynch; Adam Thurn; Greg Clifford; Dennis G. Socker; A. F. Thernisien; Damien Chua; M. G. Linton; David Keller; James Robert Janesick; John Robertson Tower; Mark Grygon; Robert Hagood; William Bast; Paulett C. Liewer; Eric DeJong; Marco Velli; Zoran Mikic; V. Bothmer; Pierre Rochus; Jean-Philippe Halain; P. L. Lamy
The SoloHI instrument for the ESA/NASA Solar Orbiter mission will track density fluctuations in the inner heliosphere, by observing visible sunlight scattered by electrons in the solar wind. Fluctuations are associated with dynamic events such as coronal mass ejections, but also with the “quiescent” solar wind. SoloHI will provide the crucial link between the low corona observations from the Solar Orbiter instruments and the in-situ measurements on Solar Orbiter and the Solar Probe Plus missions. The instrument is a visible-light telescope, based on the SECCHI/Heliospheric Imager (HI) currently flying on the STEREO mission. In this concept, a series of baffles reduce the scattered light from the solar disk and reflections from the spacecraft to levels below the scene brightness, typically by a factor of 1012. The fluctuations are imposed against a much brighter signal produced by light scattered by dust particles (the zodiacal light/F-corona). Multiple images are obtained over a period of several minutes and are summed on-board to increase the signal-to-noise ratio and to reduce the telemetry load. SoloHI is a single telescope with a 40⁰ field of view beginning at 5° from the Sun center. Through a series of Venus gravity assists, the minimum perihelia for Solar Orbiter will be reduced to about 60 Rsun (0.28 AU), and the inclination of the orbital plane will be increased to a maximum of 35° after the 7 year mission. The CMOS/APS detector is a mosaic of four 2048 x 1930 pixel arrays, each 2-side buttable with 11 μm pixels.
Proceedings of SPIE | 2010
Jean-Philippe Halain; David Berghmans; Jean-Marc Defise; Etienne Renotte; Tanguy Thibert; Emmanuel Mazy; Pierre Rochus; Bogdan Nicula; Anik De Groof; Daniel Seaton; U. Schühle
The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space weather sentinel from a low Earth orbit, providing images at 174 nm of the solar corona. The instrument concept has been adapted to the PROBA2 mini-satellite requirements (compactness, low power electronics and a-thermal opto-mechanical system). It also takes advantage of the platform pointing agility, on-board processor, Packetwire interface and autonomous operations. The key component of SWAP is a radiation resistant CMOS-APS detector combined with onboard compression and data prioritization. SWAP has been developed and qualified at the Centre Spatial de Liège (CSL) and calibrated at the PTBBessy facility. After launch, SWAP has provided its first images on 14th November 2009 and started its nominal, scientific phase in February 2010, after 3 months of platform and payload commissioning. This paper summarizes the latest SWAP developments and qualifications, and presents the first light results.
Astronomical Telescopes and Instrumentation | 2003
Jean-Marc Defise; Jean-Philippe Halain; Emmanuel Mazy; Pierre Rochus; Russell A. Howard; J. Daniel Moses; Dennis G. Socker; Richard A. Harrison; G. M. Simnett
The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar coronal plasma and coronal mass ejections (CME) over a wide field of view (~90°), ranging from 13 to 330 R0. These observations compliment the 15 R0 field of view of the solar corona obtained by the other SECCHI instruments (2 coronagraphs and an EUV imager). The key challenge of the instrument design is the rejection of the solar disk light, with total straylight attenuation of the order of 10-13 to 10-15. A multi-vane diffractive baffle system has been theoretically optimized to achieve the lower requirement (10-13 for HI-1) and is combined with a secondary baffling system to reach the 10-15 rejection performance in the second camera system (HI-2). This paper presents the last updates of the SECCHI/HI design concept, with the expected performance. A verification program is currently in progress. The on-going stray-light verification tests are discussed. A set of tests has been conducted in air, and under vacuum. The results are presented and compared with the expected theoretical data.
Proceedings of SPIE | 2012
Jean-Philippe Halain; Pierre Rochus; Etienne Renotte; Thierry Appourchaux; David Berghmans; Louise K. Harra; U. Schühle; Werner Schmutz; F. Auchère; Andrei Zhukov; C. Dumesnil; F. Delmotte; T. Kennedy; Raymond Mercier; D. Pfiffner; Laurence Rossi; J. Tandy; A. BenMoussa; Phyllis Smith
The Solar Orbiter mission will explore the connection between the Sun and its heliosphere, taking advantage of an orbit approaching the Sun at 0.28 AU. As part of this mission, the Extreme Ultraviolet Imager (EUI) will provide full-sun and high-resolution image sequences of the solar atmosphere at selected spectral emission lines in the extreme and vacuum ultraviolet. To achieve the required scientific performances under the challenging constraints of the Solar Orbiter mission it was required to further develop existing technologies. As part of this development, and of its maturation of technology readiness, a set of breadboard and prototypes of critical subsystems have thus been realized to improve the overall instrument design. The EUI instrument architecture, its major components and sub-systems are described with their driving constraints and the expected performances based on the breadboard and prototype results. The instrument verification and qualification plan will also be discussed. We present the thermal and mechanical model validation, the instrument test campaign with the structural-thermal model (STM), followed by the other instrument models in advance of the flight instrument manufacturing and AIT campaign.
Proceedings of SPIE | 2010
Jean-Philippe Halain; Pierre Rochus; Thierry Appourchaux; David Berghmans; Louise K. Harra; U. Schühle; F. Auchère; Andrei Zhukov; Etienne Renotte; Jean-Marc Defise; Laurence Rossi; Karl Fleury-Frenette; Lionel Jacques; J.-F. Hochedez; Ali Ben Moussa
The Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter consists of a suite of two high-resolution imagers (HRI) and one dual-band full Sun imager (FSI) that will provide EUV and Lyman-α images of the solar atmospheric layers above the photosphere. The EUI instrument is based on a set of challenging new technologies allowing to reach the scientific objectives and to cope with the hard space environment of the Solar Orbiter mission. The mechanical concept of the EUI instrument is based on a common structure supporting the HRI and FSI channels, and a separated electronic box. A heat rejection baffle system is used to reduce the Sun heat load and provide a first protection level against the solar disk straylight. The spectral bands are selected by thin filters and multilayer mirror coatings. The detectors are 10μm pitch back illuminated CMOS Active Pixel Sensors (APS), best suited for the EUI science requirements and radiation hardness. This paper presents the EUI instrument concept and its major sub-systems. The current developments of the instrument technologies are also summarized.