Pierre-Yves Hervé
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre-Yves Hervé.
NeuroImage | 2006
Mathieu Vigneau; Virginie Beaucousin; Pierre-Yves Hervé; Hervé Duffau; Fabrice Crivello; Olivier Houdé; Bernard Mazoyer; Nathalie Tzourio-Mazoyer
The advent of functional neuroimaging has allowed tremendous advances in our understanding of brain-language relationships, in addition to generating substantial empirical data on this subject in the form of thousands of activation peak coordinates reported in a decade of language studies. We performed a large-scale meta-analysis of this literature, aimed at defining the composition of the phonological, semantic, and sentence processing networks in the frontal, temporal, and inferior parietal regions of the left cerebral hemisphere. For each of these language components, activation peaks issued from relevant component-specific contrasts were submitted to a spatial clustering algorithm, which gathered activation peaks on the basis of their relative distance in the MNI space. From a sample of 730 activation peaks extracted from 129 scientific reports selected among 260, we isolated 30 activation clusters, defining the functional fields constituting three distributed networks of frontal and temporal areas and revealing the functional organization of the left hemisphere for language. The functional role of each activation cluster is discussed based on the nature of the tasks in which it was involved. This meta-analysis sheds light on several contemporary issues, notably on the fine-scale functional architecture of the inferior frontal gyrus for phonological and semantic processing, the evidence for an elementary audio-motor loop involved in both comprehension and production of syllables including the primary auditory areas and the motor mouth area, evidence of areas of overlap between phonological and semantic processing, in particular at the location of the selective human voice area that was the seat of partial overlap of the three language components, the evidence of a cortical area in the pars opercularis of the inferior frontal gyrus dedicated to syntactic processing and in the posterior part of the superior temporal gyrus a region selectively activated by sentence and text processing, and the hypothesis that different working memory perception-actions loops are identifiable for the different language components. These results argue for large-scale architecture networks rather than modular organization of language in the left hemisphere.
NeuroImage | 2011
Mathieu Vigneau; Virginie Beaucousin; Pierre-Yves Hervé; Gaël Jobard; Laurent Petit; Fabrice Crivello; Emmanuel Mellet; Laure Zago; Bernard Mazoyer; Nathalie Tzourio-Mazoyer
To evaluate the relative role of left and right hemispheres (RH) and describe the functional anatomy of RH during ortholinguistic tasks, we re-analyzed the 128 papers of a former left-hemisphere (LH) meta-analysis (Vigneau et al., 2006). Of these, 59 articles reported RH participation, providing 105 RH language contrasts including 218 peaks compared to 728 on the left, a proportion reflecting the LH language dominance. To describe inter-hemispheric interactions, in each of the language contrasts involving both hemispheres, we distinguished between unilateral and bilateral peaks, i.e. having homotopic activation in the LH in the same contrast. We also calculated the proportion of bilateral peaks in the LH. While the majority of LH peaks were unilateral (79%), a reversed pattern was observed in the RH; this demonstrates that, in contrast to the LH, the RH works in an inter-hemispheric manner. To analyze the regional pattern of RH participation, these unilateral and bilateral peaks were spatially clustered for each language component. Most RH phonological clusters corresponded to bilateral recruitment of auditory and motor cortices. Notably, the motor representation of the mouth and phonological working memory areas were exclusively left-lateralized, supporting the idea that the RH does not host phonological representations. Right frontal participation was not specific for the language component involved and appeared related to the recruitment of attentional and working memory areas. The fact that RH participation during lexico-semantic tasks was limited to these executive activations is compatible with the hypothesis that active inhibition is exerted from the LH during the processing of meaning. Only during sentence/text processing tasks a specific unilateral RH-temporal involvement was noted, likely related to context processing. These results are consistent with split-brain studies that found that the RH has a limited lexicon, with no phonological abilities but active involvement in the processing of context.
The Journal of Neuroscience | 2008
Jennifer S. Perrin; Pierre-Yves Hervé; Gabriel Leonard; Michel Perron; G. Bruce Pike; Alain Pitiot; Louis Richer; Suzanne Veillette; Zdenka Pausova; Tomáš Paus
The growth of white matter during human adolescence shows a striking sexual dimorphism; the volume of white matter increases with age slightly in girls and steeply in boys. Here, we provide evidence supporting the role of androgen receptor (AR) in mediating the effect of testosterone on white matter. In a large sample of typically developing adolescents (n = 408, 204 males), we used magnetic resonance imaging and acquired T1-weighted and magnetization transfer ratio (MTR) images. We also measured plasma levels of testosterone and genotyped a functional polymorphism in the AR gene, namely the number of CAG repeats in exon 1 believed to be inversely proportional to the AR transcriptional activity. We found that the testosterone-related increase of white-matter volume was stronger in male adolescents with the lower versus higher number of CAG repeats in the AR gene, with testosterone explaining, respectively, 26 and 8% of variance in the volume. The MTR results suggest that this growth is not related to myelination; the MTR decreased with age in male adolescents. We speculate that testosterone affects axonal caliber rather than the thickness of the myelin sheath.
NeuroImage | 2006
Pierre-Yves Hervé; Fabrice Crivello; Guy Perchey; Bernard Mazoyer; Nathalie Tzourio-Mazoyer
Using voxel-based morphometry, we measured the cerebral anatomical asymmetries in a sample of 56 young right-handed males and then compared voxelwise asymmetry indices of these subjects to those of 56 young left-handed males. In the right-handed, the clusters of grey matter asymmetry corresponding to the leftward occipital petalia and planum temporale asymmetries were retrieved. Strong rightward temporo-parietal asymmetries were also observed, but the rightward grey matter asymmetry in the frontal lobe was less massive than previously described. Group comparisons of left- and right-handed subjects asymmetry maps, performed at a statistical threshold not corrected for multiple comparisons, revealed significant effects of handedness on this pattern of anatomical asymmetry in frontal regions, notably in the lower central and precentral sulci, and also in the planum temporale, with right-handed subjects being more leftward asymmetric. Concerning white matter, although almost no focal differences between left- and right-handed subjects were detected, volumetric analyses at the hemispheric level revealed a leftward asymmetry, which happened to be significantly less marked in the left-handed. This latter result, together with the pattern of leftward white matter asymmetries, suggested that anatomical correlates of the left hemispheric specialization for language would exist in white matter. In the population we studied, differences in anatomical asymmetry between left- and right-handed subjects provided structural arguments for a greater functional ambilaterality in left-handed subjects.
Trends in Cognitive Sciences | 2013
Pierre-Yves Hervé; Laure Zago; Laurent Petit; Bernard Mazoyer; Nathalie Tzourio-Mazoyer
Hemispheric specialization (HS) is a hemisphere-dependent relationship between a cognitive, sensory, or motor function and a set of brain structures. It includes both the hosting by a given hemisphere of specialized networks that have unique functional properties and mechanisms that enable the inter-hemispheric coordination necessary for efficient processing. Long derived from neuropsychological and behavioral observations, knowledge of HS is currently being profoundly modified by cutting-edge neuroimaging research that focuses both on the neural implementation of HS for language, visuospatial functions, and motor control/handedness across development and on the analysis of interactions between brain regions within and across hemispheres. New findings reveal the fundamental role of lateralization in the large-scale architecture of the human brain, whose ontogenesis has begun to be investigated with genetic-heritability brain mapping.
Human Brain Mapping | 2009
Pierre-Yves Hervé; Gabriel Leonard; Michel Perron; Bruce Pike; Alain Pitiot; Louis Richer; Suzanne Veillette; Zdenka Pausova; Tomáš Paus
With anatomical magnetic resonance imaging, the signal intensity of the corticospinal tract (CST) at the level of the internal capsule is often paradoxically similar to that of grey matter. As shown previously in histological studies, this is likely due to the presence of very large axons. We measured the apparent grey‐matter density (aGMd) of the putative CST (pCST) in a large cohort of adolescents (n = 409, aged 12–18 years). We tested the following hypotheses: (1) The aGMd in the pCST shows a hemispheric asymmetry that is, in turn, related to hand preference; (2) the maturation of the CST during adolescence differs between both sexes, due to the influence of testosterone; (3) variations in aGMd in the pCST reflect inter‐individual differences in manual skills. We confirmed the first two predictions. Thus, we found a strong left > right hemispheric asymmetry in aGMd that was, on average, less marked in the 40 left‐handed subjects. Apparent GMd in the pCST increased with age in adolescent males but not females, and this was particularly related to rising plasma levels of testosterone in male adolescents. This finding is compatible with the idea that testosterone influences axonal calibre rather than myelination. The third prediction, namely that of a relationship between age‐related changes in manual skills and maturation of the pCST, was not confirmed. We conclude that the leftward asymmetry of the pCST may reflect an early established asymmetry in the number of large corticomotoneuronal fibres in the pCST. Hum Brain Mapp, 2009.
NeuroImage | 2005
Pierre-Yves Hervé; Bernard Mazoyer; Fabrice Crivello; Guy Perchey; Nathalie Tzourio-Mazoyer
The morphology of the central sulcus (CS), at the level of the hand primary motor cortex, has been shown to be related to hand preference and skill. Differences in the cerebral functional organisation of left and right-handers have been described, notably with respect to hemispheric specialisation, which might cause the neural substrate of hand dominance or skill to differ between the two groups. Here, we further explored the relationship between the anatomical variability of the central sulcus and hand skill in two groups of young male subjects differing by handedness (n = 56 right-handers and n = 55 left-handers). Grey matter volume (GMV) in the upper region of the central sulcus was estimated with Voxel Based Morphometry, using a probabilistic region of interest approach, while hand motor skill was measured with the finger tapping test. No significant anatomical differences could be evidenced between the two hand preference groups, a rightward hemispheric asymmetry being observed in both samples. However, multiple regression analyses showed that, in the right-handed group, the maximum tapping rate of the right hand correlated positively with the left central sulcus GMV, but negatively with the right. Similar analyses showed that, in left-handers, the maximum tapping rate of the non-dominant right hand was strongly correlated with the GMV of the ipsilateral CS but not significantly with that of the contralateral CS. These results may be due to differences in the organisation of motor systems between these two groups, possibly concerning a left hemispheric specialisation for fast repetitive movements in right-handers, which would be different in left-handers.
Brain Research | 2006
Goulven Josse; Pierre-Yves Hervé; Fabrice Crivello; Bernard Mazoyer; Nathalie Tzourio-Mazoyer
Increasing brain volume may impose constraints, through longer information transfer delays, on the distributed networks supporting language. Here, we assessed the relative effects of brain volume and other putative predictors of the functional variability of perisylvian language areas, as probed with PET, during both a language comprehension and a language production task. In the case of language comprehension (story listening), a linear combination of planum temporale surface, brain volume and handedness could explain almost 60% of the functional asymmetry observed in the perisylvian area. Without brain volume, the goodness of fit was significantly decreased (39%, P < 0.05), and furthermore, the effect of handedness was not detected anymore. This was due to the fact that in our sample, left-handers (n = 12) had a significantly larger brain volume as compared to right-handers (n = 8, P = 0.03). As for language production (verb generation), brain volume and the planum temporale also played a role. However, in this case, the main predictor of functional variability was handedness, where a greater degree of right-handedness was associated with larger activation of left inferior frontal regions. Depending on the language component of interest, these results support different (yet compatible) theories on hemispheric specialization. Left specialization for comprehension could be attributed to the constraints of processing speech stimuli, while a gestural origin of language is mostly supported by the relation we observed between left specialization for production and right-handedness.
Cerebral Cortex | 2010
Nathalie Tzourio-Mazoyer; Grégory Simon; Fabrice Crivello; Gaël Jobard; Laure Zago; Guy Perchey; Pierre-Yves Hervé; Marc Joliot; Laurent Petit; Emmanuel Mellet; Bernard Mazoyer
The impact of having left-handers (LHs) among ones close relatives, called familial sinistrality (FS), on neuroanatomical markers of left-hemisphere language specialization was studied in 274 normal adults, including 199 men and 75 women, among whom 77 men and 27 women were positive for FS. Measurements of the surface of a phonological cortical area, the planum temporale (PT), and gray and white matter hemispheric volumes and asymmetries were made using brain magnetic resonance images. The size of the left PT of subjects with left-handed close relatives (FS+) was reduced by 10%, decreasing with the number of left-handed relatives, and lowest when the subjects mother was left-handed. Such findings had no counterparts in the right hemisphere, and the subjects handedness and sex were found to have no significant effect or interaction with FS on the left PT size. The FS+ subjects also exhibited increased gray matter volume, reduced hemispheric gray matter leftward asymmetry, and, in LHs, reduced strength of hand preference. These results add to the increasing body of evidence suggesting multiple and somewhat independent mechanisms for the inheritance of hand and language lateralization.
NeuroImage | 2012
Pierre-Yves Hervé; Annick Razafimandimby; Mathieu Vigneau; Bernard Mazoyer; Nathalie Tzourio-Mazoyer
Areas involved in social cognition, such as the medial prefrontal cortex (mPFC) and the left temporo-parietal junction (TPJ) appear to be active during the classification of sentences according to emotional criteria (happy, angry or sad, [Beaucousin et al., 2007]). These two regions are frequently co-activated in studies about theory of mind (ToM). To confirm that these regions constitute a coherent network during affective speech comprehension, new event-related functional magnetic resonance imaging data were acquired, using the emotional and grammatical-person sentence classification tasks on a larger sample of 51 participants. The comparison of the emotional and grammatical tasks confirmed the previous findings. Functional connectivity analyses established a clear demarcation between a Medial network, including the mPFC and TPJ regions, and a bilateral Language network, which gathered inferior frontal and temporal areas. These findings suggest that emotional speech comprehension results from interactions between language, ToM and emotion processing networks. The language network, active during both tasks, would be involved in the extraction of lexical and prosodic emotional cues, while the medial network, active only during the emotional task, would drive the making of inferences about the sentences emotional content, based on their meanings. The left and right amygdalae displayed a stronger response during the emotional condition, but were seldom correlated with the other regions, and thus formed a third entity. Finally, distinct regions belonging to the Language and Medial networks were found in the left angular gyrus, where these two systems could interface.