Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre-Yves Madec is active.

Publication


Featured researches published by Pierre-Yves Madec.


Proceedings of SPIE | 2012

Overview of deformable mirror technologies for adaptive optics and astronomy

Pierre-Yves Madec

From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.


Proceedings of SPIE | 2012

VLT deformable secondary mirror: integration and electromechanical tests results

Roberto Biasi; Mario Andrighettoni; Gerald Angerer; C. Mair; Dietrich Pescoller; Paolo Lazzarini; E. Anaclerio; Marco Mantegazza; Daniele Gallieni; Elise Vernet; Robin Arsenault; Pierre-Yves Madec; Philippe Duhoux; Armando Riccardi; Marco Xompero; Runa Briguglio; Mauro Manetti; Marco Morandini

The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.


Proceedings of SPIE | 2008

ESO adaptive optics facility

Robin Arsenault; Pierre-Yves Madec; Norbert Hubin; Jerome Paufique; Stefan Stroebele; Christian Soenke; R. Donaldson; Enrico Fedrigo; Sylvain Oberti; Sebastien Tordo; Mark Downing; M. Kiekebusch; Ralf Conzelmann; Michel Duchateau; A. Jost; W. Hackenberg; D. Bonaccini Calia; Bernhard Delabre; Remko Stuik; Roberto Biasi; Daniele Gallieni; P. Lazzarini; M. Lelouarn; A. Glindeman

ESO has initiated in June 2004 a concept of Adaptive Optics Facility. One unit 8m telescope of the VLT is upgraded with a 1.1 m convex Deformable Secondary Mirror and an optimized instrument park. The AO modules GALACSI and GRAAL will provide GLAO and LTAO corrections forHawk-I and MUSE. A natural guide star mode is provided for commissioning and maintenance at the telescope. The facility is completed by a Laser Guide Star Facility launching 4 LGS from the telescope centerpiece used for the GLAO and LTAO wavefront sensing. A sophisticated test bench called ASSIST is being designed to allow an extensive testing and characterization phase of the DSM and its AO modules in Europe. Most sub-projects have entered the final design phase and the DSM has entered Manufacturing phase. First light is planned in the course of 2012 and the commissioning phases should be completed by 2013.


Proceedings of SPIE | 2010

Manufacturing of the ESO adaptive optics facility

Robin Arsenault; Pierre-Yves Madec; Norbert Hubin; Stefan Stroebele; Jerome Paufique; Elise Vernet; W. Hackenberg; Jean-Francois Pirard; L. Jochum; Andreas Glindemann; A. Jost; Ralf Conzelmann; M. Kiekebusch; Sebastien Tordo; J.-L. Lizon; R. Donaldson; Enrico Fedrigo; Christian Soenke; Michel Duchateau; A. Bruton; B. Delabre; Mark Downing; J. Reyes; Johann Kolb; C. Bechet; M. Lelouarn; D. Bonaccini Calia; Marco Quattri; I. Guidolin; Bernard Buzzoni

The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5 FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.


Proceedings of SPIE | 2012

The design of ERIS for the VLT

Paola Amico; Enrico Marchetti; Fernando Pedichini; Andrea Baruffolo; B. Delabre; Michel Duchateau; M. Ekinci; D. Fantinel; Enrico Fedrigo; Gert Finger; Christoph Frank; R. Hofmann; Paul Jolley; J.-L. Lizon; M. Le Louarn; Pierre-Yves Madec; Christian Soenke; H. Weisz

The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics Facility (AOF)1. It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is designed for the Cassegrain focus of the telescope UT4. The project just concluded its conceptual design phase and is awaiting formal approval to continue to the next phase. ERIS will offer 1-5 μm imaging and 1-2.5 μm integral field spectroscopic capabilities with high Strehl performance. As such it will replace, with much improved single conjugated AO correction, the most scientifically important and popular observing capabilities currently offered by NACO2 (diffraction limited imaging in JM band, Sparse Aperture Masking and APP coronagraphy) and by SINFONI3, whose instrumental module, SPIFFI, will be re-used in ERIS. The Cassegrain location and the performance requirements impose challenging demands on the project, from opto-mechanical design to cryogenics to the operational concept. In this paper we describe the baseline design proposed for ERIS and discuss these technical challenges, with particular emphasis on the trade-offs and the novel solutions proposed for building ERIS.


Proceedings of SPIE | 2012

Operational concept of the VLT's adaptive optics facility and its instruments

Harald Kuntschner; Paola Amico; Johann Kolb; Pierre-Yves Madec; Robin Arsenault; Marc S. Sarazin; Douglas M. Summers

The ESO Adaptive Optics Facility (AOF) will transform UT4 of the VLT into a laser driven adaptive telescope in which the corrective optics, specifically the deformable secondary mirror, and the four Laser Guide Star units are integrated. Three instruments, with their own AO modules to provide field selection capabilities and wavefront sensing, will make use of this system to provide a variety of observing modes that span from large field IR imaging with GLAO, to integral field visible spectroscopy with both GLAO and LTAO, to SCAO high Strehl imaging and spectroscopy. Each of these observing modes carries its specific demands on observing conditions. Optimal use of telescope night-time, with such a high in demand and versatile instruments suite, is mandatory to maintain and even improve upon the scientific output of the facility. This implies that the standard VLT model for operations must be updated to cover these partly new demands. In particular, we discuss three key aspects: (1) the need for an upgrade of the site monitoring facilities to provide the operators with real-time information on the environmental conditions, including the ground layer strength, and their evolution throughout the night; (2) a set of tools and procedures to effectively use these data to optimize the short-term scheduling (i.e. with granularity of one night) of the telescope and (3) the upgrade of the current laser beam avoidance software to better cope with the AOF operational scheme, where the four laser units are continuously operated as long as the atmospheric conditions allow.


Proceedings of SPIE | 2010

GRAAL: a seeing enhancer for the NIR wide-field imager Hawk-I

Jerome Paufique; A. Bruton; Andreas Glindemann; A. Jost; Johann Kolb; L. Jochum; M. Le Louarn; M. Kiekebusch; Norbert Hubin; Pierre-Yves Madec; Ralf Conzelmann; Ralf Siebenmorgen; R. Donaldson; Robin Arsenault; Sebastien Tordo

We describe the design and development status of GRAAL, the Ground-layer adaptive optics assisted by Laser, which will deliver enhanced images to the Hawk-I instrument on the VLT. GRAAL is an adaptive optics module, part of AOF, the Adaptive optics facility, using four Laser- and one natural guide-stars to measure the turbulence, and correcting for it by deforming the adaptive secondary mirror of a Unit telescope in the Paranal observatory. The outstanding feature of GRAAL is the extremely wide field of view correction, over 10 arcmin diameter, with an image enhancement of about 20% in average in K band. When observing GRAAL will provide FWHM better than 0.3 40% of the time. Besides the Adaptive optics facility deformable mirror and Laser guide stars, the system uses subelectron L3-CCD and a real-time computing platform, SPARTA. GRAAL completed early this year a final design phase shared internally and outsourced for its mechanical part by the Spanish company NTE. It is now in manufacturing, with a first light in the laboratory planned in 2011.


Proceedings of SPIE | 2014

ESO adaptive optics facility progress and first laboratory test results

Robin Arsenault; Pierre-Yves Madec; Jerome Paufique; Paolo La Penna; Stefan Stroebele; Elise Vernet; Jean-Francois Pirard; W. Hackenberg; Harald Kuntschner; Johann Kolb; Nicolas Muller; Aurea Garcia-Rissmann; Miska Le Louarn; Paola Amico; Norbert Hubin; Jean-Louis Lizon; Rob Ridings; Pierre Haguenauer; José Antonio Abad; Gerhard Fischer; Volker Heinz; M. Kiekebusch; Javier Argomedo; Ralf Conzelmann; Sebastien Tordo; R. Donaldson; Christian Soenke; Philippe Duhoux; Enrico Fedrigo; Bernard Delabre

The Adaptive Optics Facility project is completing the integration of its systems at ESO Headquarters in Garching. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM has undergone a series of tests on ASSIST in 2013 which have validated its optical performance and launched the System Test Phase of the AOF. This has been followed by the performance evaluation of the GRAAL natural guide star mode on-axis and will continue in 2014 with its Ground Layer AO mode. The GALACSI module (for MUSE) Wide-Field-Mode (GLAO) and the more challenging Narrow-Field-Mode (LTAO) will then be tested. The AOF has also taken delivery of the second scientific thin shell mirror and the first 22 Watt Sodium laser Unit. We will report on the system tests status, the performances evaluated on the ASSIST bench and advancement of the 4Laser Guide Star Facility. We will also present the near future plans for commissioning on the telescope and some considerations on tools to ensure an efficient operation of the Facility in Paranal.


Proceedings of SPIE | 2012

GALACSI system design and analysis

S. Ströbele; P. La Penna; Robin Arsenault; Ralf Conzelmann; B. Delabre; Michel Duchateau; Reinhold J. Dorn; Enrico Fedrigo; Norbert Hubin; J. Quentin; Paul Jolley; M. Kiekebusch; Jean-Paul Kirchbauer; Barbara Klein; Johann Kolb; Harald Kuntschner; M. Le Louarn; J.-L. Lizon; Pierre-Yves Madec; Lorenzo Pettazzi; Christian Soenke; Sebastien Tordo; J. Vernet; Riccardo Muradore

GALACSI is one of the Adaptive Optics (AO) systems part of the ESO Adaptive Optics Facility (AOF). It will use the VLT 4-Laser Guide Stars system, high speed and low noise WaveFront Sensor cameras (<1e-, 1000Hz) the Deformable Secondary Mirror (DSM) and the SPARTA Real Time Computer to sharpen images and enhance faint object detectability of the MUSE Instrument. MUSE is an Integral Field Spectrograph working at wavelengths from 465nm to 930nm. GALACSI implements 2 different AO modes; in Wide Field Mode (WFM) it will perform Ground Layer AO correction and enhance the collected energy in a 0.2 by 0.2 pixel by a factor 2 at 750nm over a Field of View (FoV) of 1 by 1. The 4 LGSs and one tip tilt reference star (R-mag <17.5) are located outside the MUSE FoV. Key requirements are to provide this performance and a very good image stability for a 1hour long integration time. In Narrow Field Mode (NFM) Laser Tomography AO will be used to reconstruct and correct the turbulence for the center field using the 4 LGSs at 15 off axis and the Near Infra Red (NIR) light of one reference star on axis for tip tilt and focus sensing. In NFM GALACSI will provide a moderate Strehl Ratio of 5% (goal 10%) at 650nm. The NFM hosts several challenges and many subsystems will be pushed to their limits. The opto mechanical design and error budgets of GALACSI is described here.


Proceedings of SPIE | 2016

GRAAL on the mountaintop

Jerome Paufique; Pierre-Yves Madec; Johann Kolb; Harald Kuntschner; Javier Argomedo; M. Kiekebusch; Robert Donaldson; Robin Arsenault; Ralf Siebenmorgen; Christian Soenke; Sebastien Tordo; Ralf Conzelmann; A. Jost; Javier Reyes-Moreno; Mark Downing; Pascale Hibon; Jose Javier Valenzuela; Pierre Haguenauer

GRAAL is the adaptive optics module feeding the wide-field IR imager HAWK-I at the VLT observatory. As part of the adaptive optics facility, GRAAL is equipped with 4 Laser-guide star wave-front sensors and provides a large field-of-view, ground layer correction system to HAWK-I. After a successful testing in Europe, the module has been re-assembled in Chile and installed at the Nasmyth-A platform of Yepun, the fourth Unit telescope of the observatory. We report on the installation of GRAAL on the mountain and on its first testing in stand-alone and on-sky.

Collaboration


Dive into the Pierre-Yves Madec's collaboration.

Top Co-Authors

Avatar

Robin Arsenault

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Johann Kolb

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Christian Soenke

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

M. Kiekebusch

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Miska Le Louarn

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Norbert Hubin

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Ralf Conzelmann

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Harald Kuntschner

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Jerome Paufique

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Sebastien Tordo

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge