Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerome Paufique is active.

Publication


Featured researches published by Jerome Paufique.


Proceedings of SPIE | 2004

CRIRES: A High Resolution Infrared Spectrograph for ESO’s VLT

Hans-Ulrich Kaeufl; Pascal Ballester; Peter Biereichel; Bernard Delabre; R. Donaldson; Reinhold J. Dorn; Enrico Fedrigo; Gert Finger; Gerhard Fischer; F. Franza; Domingo Gojak; Gotthard Huster; Yves Jung; Jean-Louis Lizon; Leander Mehrgan; Manfred Meyer; Alan F. M. Moorwood; Jean-Francois Pirard; Jerome Paufique; Eszter Pozna; Ralf Siebenmorgen; Armin Silber; Joerg Stegmeier; Stefan Wegerer

CRIRES is a cryogenic, pre-dispersed, infrared echelle spectrograph designed to provide a resolving power lambda/(Delta lambda) of 105 between 1 and 5mu m at the Nasmyth focus B of the 8m VLT unit telescope #1 (Antu). A curvature sensing adaptive optics system feed is used to minimize slit losses and to provide diffraction limited spatial resolution along the slit. A mosaic of 4 Aladdin~III InSb-arrays packaged on custom-fabricated ceramics boards has been developed. This provides for an effective 4096x512 pixel focal plane array, to maximize the free spectral range covered in each exposure. Insertion of gas cells to measure high precision radial velocities is foreseen. For measurement of circular polarization a Fresnel rhomb in combination with a Wollaston prism for magnetic Doppler imaging is foreseen. The implementation of full spectropolarimetry is under study. This is one result of a scientific workshop held at ESO in late 2003 to refine the science-case of CRIRES. Installation at the VLT is scheduled during the first half of 2005. Here we briefly recall the major design features of CRIRES and describe its current development status including a report of laboratory testing.


Proceedings of SPIE | 2004

First light of SINFONI AO-module at VLT

Henri Bonnet; Ralf Conzelmann; Bernhard Delabre; Robert Donaldson; Enrico Fedrigo; Norbert Hubin; Markus Kissler-Patig; Jean-Louis Lizon; Jerome Paufique; Silvio Rossi; Stefan Stroebele; Sebastien Tordo

SINFONI is an Adaptive Optics assisted near infrared Integral Field Spectrometer, currently in the process of installation and commissioning at the Cassegrain focus of VLT Unit Telescope 4 (YEPUN) in Paranal (Chile). The focal plane instrument (SPIFFI) provides simultaneous spectra of 2048 contiguous spatial pixels covering a two dimensional field of view with almost 100% spatial fill factor and with a spectral resolution of ~3500 in the J, H and K bands. It is fed by the Adaptive Optics Module, a 60 elements bimorph deformable mirror technology / curvature sensing system, derived from MACAO and upgraded to Laser Guide Star operations. This papers reports on the Adaptive Optics Module first light (May 31st 2004). Performances in Natural Guide Star mode were validated during the first commissioning and tests were carried out in preparation to the Laser Guide Star mode. Combined operations of the AO-Module with SPIFFI will start during the second commissioning in July. SINFONI is scheduled to be offered to the community in Natural Guide Star mode in April 2005. The commissioning of the instrument in Laser Guide Star mode will take place in the course of 2005 after successful completion of the Laser Guide Star Facility commissioning.


Proceedings of SPIE | 2004

MACAO-VLTI adaptive optics systems performance

Robin Arsenault; R. Donaldson; Christophe Dupuy; Enrico Fedrigo; Norbert Hubin; Liviu Ivanescu; Markus Kasper; Sylvain Oberti; Jerome Paufique; Silvio Rossi; Armin Silber; Bernhard Delabre; Jean-Louis Lizon; Pierre Gigan

In April and August ’03 two MACAO-VLTI curvature AO systems were installed on the VLT telescopes unit 2 and 3 in Paranal (Chile). These are 60 element systems using a 150mm bimorph deformable mirror and 60 APD’s as WFS detectors. Valuable integration & commissioning experience has been gained during these 2 missions. Several tests have been performed in order to evaluate system performance on the sky. The systems have proven to be extremely robust, performing in a stable fashion in extreme seeing condition (seeing up to 3”). Strehl ratio of 0.65 and residual tilt smaller than 10 mas have been obtained on the sky in 0.8” seeing condition. Weak guide source performance is also excellent with a strehl of 0.26 on a V~16 magnitude star. Several functionalities have been successfully tested including: chopping, off-axis guiding, atmospheric refraction compensation etc. The AO system can be used in a totally automatic fashion with a small overhead: the AO loop can be closed on the target less than 60 sec after star acquisition by the telescope. It includes reading the seeing value given by the site monitor, evaluate the guide star magnitude (cycling through neutral density filters) setting the close-loop AO parameters (system gain and vibrating membrane mirror stroke) including calculation of the command-matrix. The last 2 systems will be installed in August ’04 and in the course of 2005.


Proceedings of SPIE | 2010

ATLAS: the E-ELT laser tomographic adaptive optics system

Thierry Fusco; Yann Clenet; Mathieu Cohen; Hermine Schnetler; Jerome Paufique; Vincent Michau; Jean-Philippe Amans; Damien Gratadour; Cyril Petit; Clélia Robert; Pascal Jagourel; Eric Gendron; Gerard Rousset; Jean-Marc Conan; Norbert Hubin

ATLAS is a generic Laser Tomographic AO (LTAO) system for the E-ELT. Based on modular, relatively simple, and yet innovative concepts, it aims at providing diffraction limited images in the near infra-red for a close to 100 percent sky coverage.


Astronomical Telescopes and Instrumentation | 2003

MACAO-VLTI: an adaptive optics system for the ESO interferometer

Robin Arsenault; Jaime Alonso; Henri Bonnet; Joar Brynnel; Bernard Delabre; Robert Donaldson; Christophe Dupuy; Enrico Fedrigo; Jacopo Farinato; Norbert Hubin; Liviu Ivanescu; Markus Kasper; Jerome Paufique; Silvio Rossi; Sebastien Tordo; Stefan Stroebele; J.-L. Lizon; Pierre Gigan; Francoise Delplancke; Armin Silber; Marco Quattri; Roland Reiss

MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLTs. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned for June 2003 and the last one for June 2004.


Proceedings of SPIE | 2008

ESO adaptive optics facility

Robin Arsenault; Pierre-Yves Madec; Norbert Hubin; Jerome Paufique; Stefan Stroebele; Christian Soenke; R. Donaldson; Enrico Fedrigo; Sylvain Oberti; Sebastien Tordo; Mark Downing; M. Kiekebusch; Ralf Conzelmann; Michel Duchateau; A. Jost; W. Hackenberg; D. Bonaccini Calia; Bernhard Delabre; Remko Stuik; Roberto Biasi; Daniele Gallieni; P. Lazzarini; M. Lelouarn; A. Glindeman

ESO has initiated in June 2004 a concept of Adaptive Optics Facility. One unit 8m telescope of the VLT is upgraded with a 1.1 m convex Deformable Secondary Mirror and an optimized instrument park. The AO modules GALACSI and GRAAL will provide GLAO and LTAO corrections forHawk-I and MUSE. A natural guide star mode is provided for commissioning and maintenance at the telescope. The facility is completed by a Laser Guide Star Facility launching 4 LGS from the telescope centerpiece used for the GLAO and LTAO wavefront sensing. A sophisticated test bench called ASSIST is being designed to allow an extensive testing and characterization phase of the DSM and its AO modules in Europe. Most sub-projects have entered the final design phase and the DSM has entered Manufacturing phase. First light is planned in the course of 2012 and the commissioning phases should be completed by 2013.


Proceedings of SPIE | 2006

The ESO Adaptive Optics Facility

S. Ströbele; Robin Arsenault; Roland Bacon; Roberto Biasi; Domenico Bonaccini-Calia; Mark Downing; Ralf Conzelmann; Bernhard Delabre; R. Donaldson; Michel Duchateau; Simone Esposito; Enrico Fedrigo; Daniele Gallieni; W. Hackenberg; Norbert Hubin; M. Kasper; Markus Kissler-Patig; M. Le Louarn; Richard M. McDermid; Sylvain Oberti; Jerome Paufique; Armando Riccardi; Remko Stuik; Elise Vernet

The Adaptive Optics Facility is a project to convert one VLT-UT into a specialized Adaptive Telescope. The present secondary mirror (M2) will be replaced by a new M2-Unit hosting a 1170 actuators deformable mirror. The 3 focal stations will be equipped with instruments adapted to the new capability of this UT. Two instruments are in development for the 2 Nasmyth foci: Hawk-I with its AO module GRAAL allowing a Ground Layer Adaptive Optics correction and MUSE with GALACSI for GLAO correction and Laser Tomography Adaptive Optics correction. A future instrument still needs to be defined for the Cassegrain focus. Several guide stars are required for the type of adaptive corrections needed and a four Laser Guide Star facility (4LGSF) is being developed in the scope of the AO Facility. Convex mirrors like the VLT M2 represent a major challenge for testing and a substantial effort is dedicated to this. ASSIST, is a test bench that will allow testing of the Deformable Secondary Mirror and both instruments with simulated turbulence. This article describes the Adaptive Optics facility systems composing associated with it.


Proceedings of SPIE | 2004

MACAO-CRIRES: a step toward high-resolution spectroscopy

Jerome Paufique; Peter Biereichel; R. Donaldson; Bernhard Delabre; Enrico Fedrigo; F. Franza; Pierre Gigan; Domingo Gojak; Norbert Hubin; Markus Kasper; Hans-Ulrich Kaeufl; Jean-Louis Lizon; Sylvain Oberti; Jean-Francois Pirard; Eszter Pozna; Joana Santos; Stefan Stroebele

High resolution spectroscopy made an important step ahead 10 years ago, leading for example to the discovery of numerous exoplanets. But the IR did not benefit from this improvement until very recently. CRIRES will provide a dramatic improvement in the 1-5 micron region in this field. Adaptive optics will allow us increasing both flux and angular resolution on its spectra. This paper describes the adaptive optics of CRIRES, its main limitations, its main components, the principle of its calibration with an overview of the methods used and the very first results obtained since it is installed in the laboratory.


Proceedings of SPIE | 2010

An overview of the E-ELT instrumentation programme

S. Ramsay; S. D'Odorico; M. Casali; J. C. González; Norbert Hubin; M. Kasper; H. U. Käufl; Markus Kissler-Patig; Enrico Marchetti; Jerome Paufique; Luca Pasquini; Ralf Siebenmorgen; A. Richichi; J. Vernet; Filippo M. Zerbi

In this paper we present a brief status report on the conceptual designs of the instruments and adaptive optics modules that have been studied for the European Extremely Large Telescope (E-ELT). In parallel with the design study for the 42-m telescope, ESO launched 8 studies devoted to the proposed instruments and 2 for post-focal adaptive optics systems. The studies were carried out in consortia of ESO member state institutes or, in two cases, by ESO in collaboration with external institutes. All studies have now been successfully completed. The result is a powerful set of facility instruments which promise to deliver the scientific goals of the telescope. The aims of the individual studies were broad: to explore the scientific capabilities required to meet the E-ELT science goals, to examine the technical feasibility of the instrument, to understand the requirements placed on the telescope design and to develop a delivery plan. From the perspective of the observatory, these are key inputs to the development of the proposal for the first generation E-ELT instrument suite along with the highest priority science goals and budgetary and technical constraints. We discuss the lessons learned and some of the key results of the process.


Proceedings of SPIE | 2014

ESO adaptive optics facility progress and first laboratory test results

Robin Arsenault; Pierre-Yves Madec; Jerome Paufique; Paolo La Penna; Stefan Stroebele; Elise Vernet; Jean-Francois Pirard; W. Hackenberg; Harald Kuntschner; Johann Kolb; Nicolas Muller; Aurea Garcia-Rissmann; Miska Le Louarn; Paola Amico; Norbert Hubin; Jean-Louis Lizon; Rob Ridings; Pierre Haguenauer; José Antonio Abad; Gerhard Fischer; Volker Heinz; M. Kiekebusch; Javier Argomedo; Ralf Conzelmann; Sebastien Tordo; R. Donaldson; Christian Soenke; Philippe Duhoux; Enrico Fedrigo; Bernard Delabre

The Adaptive Optics Facility project is completing the integration of its systems at ESO Headquarters in Garching. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM has undergone a series of tests on ASSIST in 2013 which have validated its optical performance and launched the System Test Phase of the AOF. This has been followed by the performance evaluation of the GRAAL natural guide star mode on-axis and will continue in 2014 with its Ground Layer AO mode. The GALACSI module (for MUSE) Wide-Field-Mode (GLAO) and the more challenging Narrow-Field-Mode (LTAO) will then be tested. The AOF has also taken delivery of the second scientific thin shell mirror and the first 22 Watt Sodium laser Unit. We will report on the system tests status, the performances evaluated on the ASSIST bench and advancement of the 4Laser Guide Star Facility. We will also present the near future plans for commissioning on the telescope and some considerations on tools to ensure an efficient operation of the Facility in Paranal.

Collaboration


Dive into the Jerome Paufique's collaboration.

Top Co-Authors

Avatar

Robin Arsenault

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Enrico Fedrigo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Norbert Hubin

University of California

View shared research outputs
Top Co-Authors

Avatar

Sylvain Oberti

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Sebastien Tordo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Stefan Stroebele

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Johann Kolb

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

R. Donaldson

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Reinhold J. Dorn

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

M. Kiekebusch

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge