Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piers A. Hemsley is active.

Publication


Featured researches published by Piers A. Hemsley.


The Plant Cell | 2005

The TIP GROWTH DEFECTIVE1 S -Acyl Transferase Regulates Plant Cell Growth in Arabidopsis

Piers A. Hemsley; Alison C. Kemp; Claire S. Grierson

TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Δ, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1− mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.


New Phytologist | 2013

A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis

Piers A. Hemsley; Thilo Weimar; Kathryn S. Lilley; Paul Dupree; Claire S. Grierson

S-acylation (palmitoylation) is a poorly understood post-translational modification of proteins involving the addition of acyl lipids to cysteine residues. S-acylation promotes the association of proteins with membranes and influences protein stability, microdomain partitioning, membrane targeting and activation state. No consensus motif for S-acylation exists and it therefore requires empirical identification. Here, we describe a biotin switch isobaric tagging for relative and absolute quantification (iTRAQ)-based method to identify S-acylated proteins from Arabidopsis. We use these data to predict and confirm S-acylation of proteins not in our dataset. We identified c. 600 putative S-acylated proteins affecting diverse cellular processes. These included proteins involved in pathogen perception and response, mitogen-activated protein kinases (MAPKs), leucine-rich repeat receptor-like kinases (LRR-RLKs) and RLK superfamily members, integral membrane transporters, ATPases, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs) and heterotrimeric G-proteins. The prediction of S-acylation of related proteins was demonstrated by the identification and confirmation of S-acylation sites within the SNARE and LRR-RLK families. We showed that S-acylation of the LRR-RLK FLS2 is required for a full response to elicitation by the flagellin derived peptide flg22, but is not required for localization to the plasma membrane. Arabidopsis contains many more S-acylated proteins than previously thought. These data can be used to identify S-acylation sites in related proteins. We also demonstrated that S-acylation is required for full LRR-RLK function.


New Phytologist | 2012

The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways

Deepthi L. Wathugala; Piers A. Hemsley; Caroline S. Moffat; Pieter Cremelie; Marc R. Knight; Heather Knight

• Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only.


Trends in Plant Science | 2008

Multiple roles for protein palmitoylation in plants

Piers A. Hemsley; Claire S. Grierson

Palmitoylation, more correctly known as S-acylation, aids in the regulation of cellular functions including stress response, disease resistance, hormone signalling, cell polarisation, cell expansion and cytoskeletal organization. S-acylation is the reversible addition of fatty acids to proteins, which increases their membrane affinity. Membrane-protein interactions are important for signalling complex formation and signal propagation, protein sequestration and segregation, protein stability, and maintaining polarity within the cell. S-acylation is a dynamic modification that modulates the activity and membrane association of many signalling molecules, including ROP GTPases, heterotrimeric G-proteins and calcium-sensing kinases. Recent advances in methods to study S-acylation are permitting an in-depth examination of its function in plants.


The Plant Cell | 2014

The Arabidopsis Mediator Complex Subunits MED16, MED14, and MED2 Regulate Mediator and RNA Polymerase II Recruitment to CBF-Responsive Cold-Regulated Genes

Piers A. Hemsley; Charlotte H. Hurst; Ewon Kaliyadasa; Rebecca Lamb; Marc R. Knight; Elizabeth A. De Cothi; John F.C. Steele; Heather Knight

This article demonstrates roles for three subunits of the Plant Mediator complex in recruiting Mediator and RNA polymerase II to specific cold-upregulated genes, facilitating their expression and the subsequent gain of freezing tolerance by the plant. Not all Mediator subunits regulate the same genes, with dark-inducible expression using different subunits than cold-inducible expression. The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.


Plant Methods | 2008

Assaying protein palmitoylation in plants

Piers A. Hemsley; Laura Taylor; Claire S. Grierson

BackgroundProtein S-acylation (also known as palmitoylation) is the reversible post-translational addition of acyl lipids to cysteine residues in proteins through a thioester bond. It allows strong association with membranes. Whilst prediction methods for S-acylation exist, prediction is imperfect. Existing protocols for demonstrating the S-acylation of plant proteins are either laborious and time consuming or expensive.ResultsWe describe a biotin switch method for assaying the S-acylation of plant proteins. We demonstrate the technique by showing that the heterotrimeric G protein subunit AGG2 is S-acylated as predicted by mutagenesis experiments. We also show that a proportion of the Arabidopsis alpha-tubulin subunit pool is S-acylated in planta. This may account for the observed membrane association of plant microtubules. As alpha-tubulins are ubiquitously expressed they can potentially be used as a positive control for the S-acylation assay regardless of the cell type under study.ConclusionWe provide a robust biotin switch protocol that allows the rapid assay of protein S-acylation state in plants, using standard laboratory techniques and without the need for expensive or specialised equipment. We propose alpha-tubulin as a useful positive control for the protocol.


New Phytologist | 2015

The importance of lipid modified proteins in plants

Piers A. Hemsley

Membranes have long been known to act as more than physical barriers within and between plant cells. Trafficking of membrane proteins, signalling from and across membranes, organisation of membranes and transport through membranes are all essential processes for plant cellular function. These processes rely on a myriad array of proteins regulated in a variety of manners and are frequently required to be directly associated with membranes. For integral membrane proteins, the mode of membrane association is readily apparent, but many peripherally associated membrane proteins are outwardly soluble proteins. In these cases the proteins are frequently modified by the addition of lipids allowing direct interaction with the hydrophobic core of membranes. These modifications include N-myristoylation, S-acylation (palmitoylation), prenylation and GPI anchors but until recently little was truly known about their function in plants. New data suggest that these modifications are able to act as more than just membrane anchors, and dynamic S-acylation in particular is emerging as a means of regulating protein function in a similar manner to phosphorylation. This review discusses how these modifications occur, their impact on protein function, how they are regulated, recent advances in the field and technical approaches for studying these modifications.


Molecular Membrane Biology | 2009

Protein S-acylation in plants (Review)

Piers A. Hemsley

Membrane resident proteins are a common feature of biology yet many of these proteins are not integral to the membrane. These peripheral membrane proteins are often bound to the membrane by the addition of fatty acyl chains to the protein. This modification, known as S-acylation or palmitoylation, promotes very strong membrane association but is also reversible allowing for a high degree of control over membrane association. Many S-acylated proteins are resident in sterol, sphingolipid and saturated-lipid enriched microdomains indicating an important role for S-acylation in protein partitioning within membranes. This review summarises the current knowledge of S-acylation in plants. S-acylated proteins play a wide variety of roles in plants and affect Ca2+ signalling, K+ movement, stress signalling, small and heterotrimeric G-protein membrane association and partitioning, tubulin function as well as pathogenesis. Although the study of S-acylation is in its infancy in plants this review illustrates that S-acylation is extremely important for plant function and that there are many unexplored aspects of S-acylation in plants. A full summary of the techniques and methods available to study S-acylation in plants is also presented.


PLOS ONE | 2011

The Ankyrin Repeats and DHHC S-acyl Transferase Domain of AKR1 Act Independently to Regulate Switching from Vegetative to Mating States in Yeast

Piers A. Hemsley; Claire S. Grierson

Signal transduction from G-protein coupled receptors to MAPK cascades through heterotrimeric G-proteins has been described for many eukaryotic systems. One of the best-characterised examples is the yeast pheromone response pathway, which is negatively regulated by AKR1. AKR1-like proteins are present in all eukaryotes and contain a DHHC domain and six ankyrin repeats. Whilst the DHHC domain dependant S-acyl transferase (palmitoyl transferase) function of AKR1 is well documented it is not known whether the ankyrin repeats are also required for this activity. Here we show that the ankyrin repeats of AKR1 are required for full suppression of the yeast pheromone response pathway, by sequestration of the Gβγ dimer, and act independently of AKR1 S-acylation function. Importantly, the functions provided by the AKR1 ankyrin repeats and DHHC domain are not required on the same molecule to fully restore WT phenotypes and function. We also show that AKR1 molecules are S-acylated at locations other than the DHHC cysteine, increasing the abundance of AKR1 in the cell. Our results have important consequences for studies of AKR1 function, including recent attempts to characterise S-acylation enzymology and kinetics. Proteins similar to AKR1 are found in all eukaryotes and our results have broad implications for future work on these proteins and the control of switching between Gβγ regulated pathways.


Science | 2016

S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization

Manoj Kumar; Raymond Wightman; Ivan Atanassov; Anjali Gupta; Charlotte H. Hurst; Piers A. Hemsley; Simon R. Turner

Location, location, S-acylation Cellulose synthase is a large, multisubunit machine that “swims” along the plant cell membrane as it spins out cellulose fibers. Kumar et al. show that the cellulose synthase complex is heavily modified through S-acylation. Subsets of the acylation sites were required for the complex to integrate into the plasma membrane. A single functional complex could bear as many as 100 modification sites, potentially changing its biophysical characteristics and helping it to associate with the membrane. Science, this issue p. 166 The large, multisubunit complex that makes cellulose fibers alters its own membrane environment to keep it in the correct location. Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment.

Collaboration


Dive into the Piers A. Hemsley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Dupree

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Thilo Weimar

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison G. Roberts

Scottish Crop Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge