Pieter B. Burger
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pieter B. Burger.
The Journal of Neuroscience | 2010
Shashank M. Dravid; Pieter B. Burger; Anand Prakash; Matthew T. Geballe; Roopali Yadav; Phuong Thi Quy Le; Kimberly Vellano; James P. Snyder; Stephen F. Traynelis
We have studied relative efficacies of NR1 agonists glycine and d-cycloserine (DCS), and found efficacy to be dependent on the NR2 subunit. DCS shows partial agonism at NR1/NR2B but has higher relative efficacy than glycine at NR1/NR2C receptor. Molecular dynamics (MD) simulations of the NR1/NR2B and NR1/NR2C agonist binding domain dimer suggest only subtle differences in the interactions of DCS with NR1 binding site residues relative to glycine. The most pronounced differences were observed in the NR1/NR2C simulation between the orientation of helices F and G of the NR1 subunit. Interestingly, Helix F was previously proposed to influence receptor gating and to adopt an orientation depending on agonist efficacy. MD simulations and site-directed mutagenesis further suggest a role for residues at the agonist binding domain dimer interface in regulating DCS efficacy. To relate the structural rearrangements to receptor gating, we recorded single-channel currents from outside-out patches containing a single active NR1/NR2C receptor. DCS increased the mean open time and open probability of NR1/NR2C receptors compared with glycine. Maximum likelihood fitting of a gating model for NR1/NR2C receptor activation to the single-channel data suggests that DCS specifically accelerates the rate constant governing a fast gating step and reduces the closing rate. These changes appear to reflect a decreased activation energy for a pregating step and increased stability of the open states. We suggest that the higher efficacy of DCS at NR1/NR2C receptors involves structural rearrangements at the dimer interface and an effect on NR1/NR2C receptor pregating conformational changes.
Molecular Pharmacology | 2011
Timothy M. Acker; Hongjie Yuan; Kasper B. Hansen; Katie M. Vance; Kevin K. Ogden; Henrik S. Jensen; Pieter B. Burger; Praseeda Mullasseril; James P. Snyder; Dennis C. Liotta; Stephen F. Traynelis
The compound 4-(5-(4-bromophenyl)-3-(6-methyl-2-oxo-4-phenyl-1,2-dihydroquinolin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxobutanoic acid (DQP-1105) is a representative member of a new class of N-methyl-d-aspartate (NMDA) receptor antagonists. DQP-1105 inhibited GluN2C- and GluN2D-containing receptors with IC50 values that were at least 50-fold lower than those for recombinant GluN2A-, GluN2B-, GluA1-, or GluK2-containing receptors. Inhibition was voltage-independent and could not be surmounted by increasing concentrations of either coagonist, glutamate or glycine, consistent with a noncompetitive mechanism of action. DQP-1105 inhibited single-channel currents in excised outside-out patches without significantly changing mean open time or single-channel conductance, suggesting that DQP inhibits a pregating step without changing the stability of the open pore conformation and thus channel closing rate. Evaluation of DQP-1105 inhibition of chimeric NMDA receptors identified two key residues in the lower lobe of the GluN2 agonist binding domain that control the selectivity of DQP-1105. These data suggest a mechanism for this new class of inhibitors and demonstrate that ligands can access, in a subunit-selective manner, a new site located in the lower, membrane-proximal portion of the agonist-binding domain.
American Journal of Human Genetics | 2016
Sharon A. Swanger; Wenjuan Chen; Gordon Wells; Pieter B. Burger; Anel Tankovic; Subhrajit Bhattacharya; Katie L. Strong; Chun Hu; Hirofumi Kusumoto; Jing Zhang; David Adams; John Millichap; Slavé Petrovski; Stephen F. Traynelis; Hongjie Yuan
Epilepsy and intellectual disability are associated with rare variants in the GluN2A and GluN2B (encoded by GRIN2A and GRIN2B) subunits of the N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel with essential roles in brain development and function. By assessing genetic variation across GluN2 domains, we determined that the agonist binding domain, transmembrane domain, and the linker regions between these domains were particularly intolerant to functional variation. Notably, the agonist binding domain of GluN2B exhibited significantly more variation intolerance than that of GluN2A. To understand the ramifications of missense variation in the agonist binding domain, we investigated the mechanisms by which 25 rare variants in the GluN2A and GluN2B agonist binding domains dysregulated NMDAR activity. When introduced into recombinant human NMDARs, these rare variants identified in individuals with neurologic disease had complex, and sometimes opposing, consequences on agonist binding, channel gating, receptor biogenesis, and forward trafficking. Our approach combined quantitative assessments of these effects to estimate the overall impact on synaptic and non-synaptic NMDAR function. Interestingly, similar neurologic diseases were associated with both gain- and loss-of-function variants in the same gene. Most rare variants in GluN2A were associated with epilepsy, whereas GluN2B variants were associated with intellectual disability with or without seizures. Finally, discerning the mechanisms underlying NMDAR dysregulation by these rare variants allowed investigations of pharmacologic strategies to correct NMDAR function.
Molecular Pharmacology | 2014
Alpa Khatri; Pieter B. Burger; Sharon A. Swanger; Kasper B. Hansen; Sommer S. Zimmerman; Erkan Karakas; Dennis C. Liotta; Hiro Furukawa; James P. Snyder; Stephen F. Traynelis
NMDA receptors are tetrameric complexes of GluN1, GluN2A-D, and GluN3A-B subunits and are involved in normal brain function and neurologic disorders. We identified a novel class of stereoselective pyrrolidinone (PYD) positive allosteric modulators for GluN2C-containing NMDA receptors, exemplified by methyl 4-(3-acetyl-4-hydroxy-1-[2-(2-methyl-1H-indol-3-yl)ethyl]-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)benzoate. Here we explore the site and mechanism of action of a prototypical analog, PYD-106, which at 30 μM does not alter responses of NMDA receptors containing GluN2A, GluN2B, and GluN2D and has no effect on AMPA [α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid] and kainate receptors. Coapplication of 50 μM PYD-106 with a maximally effective concentration of glutamate and glycine increases the response of GluN1/GluN2C NMDA receptors in HEK-293 cells to 221% of that obtained in the absence of PYD (taken as 100%). Evaluation of the concentration dependence of this enhancement revealed an EC50 value for PYD of 13 μM. PYD-106 increased opening frequency and open time of single channel currents activated by maximally effective concentrations of agonist but only had modest effects on glutamate and glycine EC50. PYD-106 selectively enhanced the responses of diheteromeric GluN1/GluN2C receptors but not triheteromeric GluN1/GluN2A/GluN2C receptors. Inclusion of residues encoded by GluN1-exon 5 attenuated the effects of PYD. Three GluN2C residues (Arg194, Ser470, Lys470), at which mutagenesis virtually eliminated PYD function, line a cavity at the interface of the ligand binding and the amino terminal domains in a homology model of GluN1/GluN2C built from crystallographic data on GluN1/GluN2B. We propose that this domain interface constitutes a new allosteric modulatory site on the NMDA receptor.
Molecular Pharmacology | 2012
Pieter B. Burger; Hongjie Yuan; Erkan Karakas; Matthew T. Geballe; Hiro Furukawa; Dennis C. Liotta; James P. Snyder; Stephen F. Traynelis
We have used recent structural advances in our understanding of the N-methyl-d-aspartate (NMDA) receptor amino terminal domain to explore the binding mode of multiple diaryl GluN2B-selective negative allosteric modulators at the interface between the GluN1 and GluN2B amino-terminal domains. We found that interaction of the A ring within the binding pocket seems largely invariant for a variety of structurally distinct ligands. In addition, a range of structurally diverse linkers between the two aryl rings can be accommodated by the binding site, providing a potential opportunity to tune interactions with the ligand binding pocket via changes in hydrogen bond donors, acceptors, as well as stereochemistry. The most diversity in atomic interactions between protein and ligand occur in the B ring, with functional groups that contain electron donors and acceptors providing additional atomic contacts within the pocket. A cluster of residues distant to the binding site also control ligand potency, the degree of inhibition, and show ligand-induced increases in motion during molecular dynamics simulations. Mutations at some of these residues seem to distinguish between structurally distinct ligands and raise the possibility that GluN2B-selective ligands can be divided into multiple classes. These results should help facilitate the development of well tolerated GluN2B subunit-selective antagonists.
Molecular Pharmacology | 2017
Wenjuan Chen; Anel Tankovic; Pieter B. Burger; Hirofumi Kusumoto; Stephen F. Traynelis; Hongjie Yuan
The N-methyl-d-aspartate receptor (NMDAR), a ligand-gated ionotropic glutamate receptor, plays important roles in normal brain development and a wide range of neurologic disorders, including epilepsy. Here, we evaluate for the first time the functional properties of a de novo GRIN2A missense mutation (p.M817V) in the pre-M4 linker in a child with profound global developmental delay and refractory epilepsy. Electrophysiologic recordings revealed that the mutant GluN2A(M817V)-containing receptors showed enhanced agonist potency, reduced sensitivity to endogenous negative inhibitors (Mg2+, proton, and zinc), prolonged synaptic-like response time course, increased single-channel mean open time, and increased channel open probability. These results suggest that the gain-of-function M817V mutation causes overactivation of NMDAR and drives neuronal hyperexcitability, which may contribute to the patient’s observed epileptic phenotype. Molecular modeling of the closed channel conformation reveals that this mutation weakens the interaction between GluN2 transmembrane helix M4 and two GluN1 transmembrane helices, and increases atomic fluctuation or movement of the pre-M1 region of GluN1 subunit, suggesting a mechanism by which channel function is enhanced. The functional changes of this mutation on agonist potency occur when the mutation is introduced into all other GluN2 subunits, suggesting a conserved role of this residue in control of NMDAR function through interactions of membrane spanning GluN2 and GluN1 helices. A number of NMDAR-targeted drugs including U.S. Food and Drug Association–approved NMDAR channel blockers were evaluated for their ability to inhibit receptors containing GluN2A(M817V) as a first step to exploring the potential for rescue pharmacology and personalized medicine.
Molecular Pharmacology | 2018
Thomas Maxwell Kaiser; Steven A. Kell; Hirofumi Kusumoto; Gil Shaulsky; Subhrajit Bhattacharya; Matthew P. Epplin; Katie L. Strong; Eric Miller; Bryan D. Cox; David S. Menaldino; Dennis C. Liotta; Stephen F. Traynelis; Pieter B. Burger
N-methyl-d-aspartate (NMDA) receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modeling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit stoichiometry. We experimentally identified NMR-derived conformers in solution, which combined with molecular modeling allows the prediction of the bioactive binding pose for this series of GluN2C-selective positive allosteric modulators of NMDA receptors. These data advance our understanding of the site and nature of the ligand-protein interaction for GluN2C-selective positive allosteric modulators for NMDA receptors.
The Journal of Physiology | 2018
Alasdair J. Gibb; Kevin K. Ogden; Miranda J. McDaniel; Katie M. Vance; Steven A. Kell; Chris Butch; Pieter B. Burger; Dennis C. Liotta; Stephen F. Traynelis
The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Journal of Medicinal Chemistry | 2017
Katie L. Strong; Matthew P. Epplin; John Bacsa; Christopher J. Butch; Pieter B. Burger; David S. Menaldino; Stephen F. Traynelis; Dennis C. Liotta
We have identified a series of positive allosteric NMDA receptor (NMDAR) modulators derived from a known class of GluN2C/D-selective tetrahydroisoquinoline analogues that includes CIQ. The prototypical compound of this series contains a single isopropoxy moiety in place of the two methoxy substituents present in CIQ. Modifications of this isopropoxy-containing scaffold led to the identification of analogues with enhanced activity at the GluN2B subunit. We identified molecules that potentiate the response of GluN2B/GluN2C/GluN2D, GluN2B/GluN2C, and GluN2C/GluN2D-containing NMDARs to maximally effective concentrations of agonist. Multiple compounds potentiate the response of NMDARs with submicromolar EC50 values. Analysis of enantiomeric pairs revealed that the S-(-) enantiomer is active at the GluN2B, GluN2C, and/or GluN2D subunits, whereas the R-(+) enantiomer is only active at GluN2C/D subunits. These results provide a starting point for the development of selective positive allosteric modulators for GluN2B-containing receptors.
eLife | 2018
Riley E. Perszyk; Brooke M. Katzman; Hirofumi Kusumoto; Steven A. Kell; Matthew P. Epplin; Yesim Altas Tahirovic; Rhonda L. Moore; David S. Menaldino; Pieter B. Burger; Dennis C. Liotta; Stephen F. Traynelis
N-methyl-d-aspartate receptors (NMDARs) are an important receptor in the brain and have been implicated in multiple neurological disorders. Many non-selective NMDAR-targeting drugs are poorly tolerated, leading to efforts to target NMDAR subtypes to improve the therapeutic index. We describe here a series of negative allosteric NMDAR modulators with submaximal inhibition at saturating concentrations. Modest changes to the chemical structure interconvert negative and positive modulation. All modulators share the ability to enhance agonist potency and are use-dependent, requiring the binding of both agonists before modulators act with high potency. Data suggest that these modulators, including both enantiomers, bind to the same site on the receptor and share structural determinants of action. Due to the modulator properties, submaximal negative modulators in this series may spare NMDAR at the synapse, while augmenting the response of NMDAR in extrasynaptic spaces. These modulators could serve as useful tools to probe the role of extrasynaptic NMDARs.