Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter Bots is active.

Publication


Featured researches published by Pieter Bots.


Environmental Science & Technology | 2014

Incorporation of uranium into hematite during crystallization from ferrihydrite

Timothy A. Marshall; Katherine Morris; Gareth T. W. Law; Francis R. Livens; J. Frederick W. Mosselmans; Pieter Bots; Samuel Shaw

Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite. The results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments.


Environmental Science & Technology | 2014

Incorporation and Retention of 99-Tc(IV) in Magnetite under High pH Conditions

Timothy A. Marshall; Katherine Morris; Gareth T. W. Law; J. Frederick W. Mosselmans; Pieter Bots; Stephen A. Parry; Samuel Shaw

Technetium incorporation into magnetite and its behavior during subsequent oxidation has been investigated at high pH to determine the technetium retention mechanism(s) on formation and oxidative perturbation of magnetite in systems relevant to radioactive waste disposal. Ferrihydrite was exposed to Tc(VII)(aq) containing cement leachates (pH 10.5-13.1), and crystallization of magnetite was induced via addition of Fe(II)aq. A combination of X-ray diffraction (XRD), chemical extraction, and X-ray absorption spectroscopy (XAS) techniques provided direct evidence that Tc(VII) was reduced and incorporated into the magnetite structure. Subsequent air oxidation of the magnetite particles for up to 152 days resulted in only limited remobilization of the incorporated Tc(IV). Analysis of both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data indicated that the Tc(IV) was predominantly incorporated into the magnetite octahedral site in all systems studied. On reoxidation in air, the incorporated Tc(IV) was recalcitrant to oxidative dissolution with less than 40% remobilization to solution despite significant oxidation of the magnetite to maghemite/goethite: All solid associated Tc remained as Tc(IV). The results of this study provide the first direct evidence for significant Tc(IV) incorporation into the magnetite structure and confirm that magnetite incorporated Tc(IV) is recalcitrant to oxidative dissolution. Immobilization of Tc(VII) by reduction and incorporation into magnetite at high pH and with significant stability upon reoxidation has clear and important implications for limiting technetium migration under conditions where magnetite is formed including in geological disposal of radioactive wastes.


Langmuir | 2014

Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal

Pieter Bots; Katherine Morris; Rosemary Hibberd; Gareth T. W. Law; J. Frederick W. Mosselmans; Andy Brown; James Doutch; Andrew James Smith; Samuel Shaw

The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.


Mineralogical Magazine | 2015

Uranium fate during crystallization of magnetite from ferrihydrite in conditions relevant to the disposal of radioactive waste

Timothy A. Marshall; Katherine Morris; Gareth T. W. Law; J. Frederick W. Mosselmans; Pieter Bots; Hannah N. Roberts; Samuel Shaw

Abstract Uranium incorporation into magnetite and its behaviour during subsequent oxidation has been investigated at high pH to determine the uranium retention mechanism(s) on formation and oxidative perturbation of magnetite in systems relevant to radioactive waste disposal. Ferrihydrite was exposed to U(VI)aq containing cement leachates (pH 10.5-13.1) and crystallization of magnetite was induced via addition of Fe(II)aq. A combination of XRD, chemical extraction and XAS techniques provided direct evidence that U(VI) was reduced and incorporated into the magnetite structure, possibly as U(V), with a significant fraction recalcitrant to oxidative remobilization. Immobilization of U(VI) by reduction and incorporation into magnetite at high pH, and with significant stability upon reoxidation, has clear and important implications for limiting uranium migration in geological disposal of radioactive wastes.


Environmental Science & Technology | 2015

Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite

Diana R. Brookshaw; R. A. D. Pattrick; Pieter Bots; Gareth T. W. Law; Jonathan R. Lloyd; J. Fredrick W. Mosselmans; David J. Vaughan; Kathy Dardenne; Katherine Morris

Technetium, uranium, and neptunium are contaminants that cause concern at nuclear facilities due to their long half-life, environmental mobility, and radiotoxicity. Here we investigate the impact of microbial reduction of Fe(III) in biotite and chlorite and the role that this has in enhancing mineral reactivity toward soluble TcO4(-), UO2(2+), and NpO2(+). When reacted with unaltered biotite and chlorite, significant sorption of U(VI) occurred in low carbonate (0.2 mM) buffer, while U(VI), Tc(VII), and Np(V) showed low reactivity in high carbonate (30 mM) buffer. On reaction with the microbially reduced minerals, all radionuclides were removed from solution with U(VI) reactivity influenced by carbonate. Analysis by X-ray absorption spectroscopy (XAS) confirmed reductive precipitation to poorly soluble U(IV) in low carbonate conditions and both Tc(VII) and Np(V) in high carbonate buffer were also fully reduced to poorly soluble Tc(IV) and Np(IV) phases. U(VI) reduction was inhibited under high carbonate conditions. Furthermore, EXAFS analysis suggested that in the reaction products, Tc(IV) was associated with Fe, Np(IV) formed nanoparticulate NpO2, and U(IV) formed nanoparticulate UO2 in chlorite and was associated with silica in biotite. Overall, microbial reduction of the Fe(III) associated with biotite and chlorite primed the minerals for reductive scavenging of radionuclides: this has clear implications for the fate of radionuclides in the environment.


Environmental Science & Technology | 2016

Ferrihydrite Formation: The Role of Fe13 Keggin Clusters

Joshua Simon Weatherill; Katherine Morris; Pieter Bots; Tomasz M. Stawski; Arne Janssen; Liam G. Abrahamsen; Richard Blackham; Samuel Shaw

Ferrihydrite is the most common iron oxyhydroxide found in soil and is a key sequester of contaminants in the environment. Ferrihydrite formation is also a common component of many treatment processes for cleanup of industrial effluents. Here we characterize ferrihydrite formation during the titration of an acidic ferric nitrate solution with NaOH. In situ SAXS measurements supported by ex situ TEM indicate that initially Fe13 Keggin clusters (radius ∼ 0.45 nm) form in solution at pH 0.12-1.5 and are persistent for at least 18 days. The Fe13 clusters begin to aggregate above ∼ pH 1, initially forming highly linear structures. Above pH ∼ 2 densification of the aggregates occurs in conjunction with precipitation of low molecular weight Fe(III) species (e.g., monomers, dimers) to form mass fractal aggregates of ferrihydrite nanoparticles (∼3 nm) in which the Fe13 Keggin motif is preserved. SAXS analysis indicates the ferrihydrite particles have a core-shell structure consisting of a Keggin center surrounded by a Fe-depleted shell, supporting the surface depleted model of ferrihydrite. Overall, we present the first direct evidence for the role of Fe13 clusters in the pathway of ferrihydrite formation during base hydrolysis, showing clear structural continuity from isolated Fe13 Keggins to the ferrihydrite particle structure. The results have direct relevance to the fundamental understanding of ferrihydrite formation in environmental, engineered, and industrial processes.


Environmental Science & Technology | 2016

Controls on the fate and speciation of Np(V) during iron (oxyhydr)oxide crystallization

Pieter Bots; Samuel Shaw; Gareth T. W. Law; Timothy A. Marshall; J. Frederick W. Mosselmans; Katherine Morris

The speciation and fate of neptunium as Np(V)O2(+) during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2(+) to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments.


American Mineralogist | 2017

Reaction pathways and textural aspects of the replacement of anhydrite by calcite at 25 °C

Teresa Roncal-Herrero; José Manuel Astilleros; Pieter Bots; Juan Diego Rodriguez-Blanco; Manuel Prieto; Liane G. Benning; Lurdes Fernández-Díaz

Abstract The replacement of sulfate minerals by calcium carbonate polymorphs (carbonation) has important implications in various geological processes occurring in Earth surface environments. In this paper we report the results of an experimental study of the interaction between anhydrite (100), (010), and (001) surfaces and Na2CO3 aqueous solutions under ambient conditions. Carbonation progress was monitored by glancing incidence X-ray diffraction (GIXRD) and scanning electron microscopy (SEM). We show that the reaction progresses through the dissolution of anhydrite and the simultaneous growth of calcite. The growth of calcite occurs oriented on the three anhydrite cleavage surfaces and its formation is accompanied by minor vaterite. The progress of the carbonation always occurs from the outer-ward to the inner-ward surfaces and its rate depends on the anhydrite surface considered, with the (001) surface being much more reactive than the (010) and (100) surfaces. The thickness of the formed carbonate layer grows linearly with time. The original external shape of the anhydrite crystals and their surface details (e.g., cleavage steps) are preserved during the carbonation reaction. Textural characteristics of the transformed regions, such as the gradation in the size of calcite crystals, from ∼2 µm in the outer region to ∼17 µm at the calcite-anhydrite interface, the local preservation of calcite crystalographic orientation with respect to anhydrite and the distribution of the microporosity mainly within the carbonate layer without development of any significant gap at the calcite-anhydrite interface. Finally, we compare these results on anhydrite carbonation with those on gypsum carbonation and can explain the differences on the basis of four parameters: (1) the molar volume change involved in the replacement process in each case, (2) the lack/existence of epitactic growth between parent and product phases, (3) the kinetics of dissolution of the different surfaces, and (4) the chemical composition (amount of structural water) of the parent phases.


Environmental Science & Technology | 2017

Impacts of Repeated Redox Cycling on Technetium Mobility in the Environment

Nicholas Karl Masters-Waage; Katherine Morris; Jonathan R. Lloyd; Samuel Shaw; J. Frederick W. Mosselmans; Christopher Boothman; Pieter Bots; Athanasios Rizoulis; Francis R. Livens; Gareth T. W. Law

Technetium is a problematic contaminant at nuclear sites and little is known about how repeated microbiologically mediated redox cycling impacts its fate in the environment. We explore this question in sediments representative of the Sellafield Ltd. site, UK, over multiple reduction and oxidation cycles spanning ∼1.5 years. We found the amount of Tc remobilised from the sediment into solution significantly decreased after repeated redox cycles. X-ray Absorption Spectroscopy (XAS) confirmed that sediment bound Tc was present as hydrous TcO2-like chains throughout experimentation and that Tcs increased resistance to remobilization (via reoxidation to soluble TcO4-) resulted from both shortening of TcO2 chains during redox cycling and association of Tc(IV) with Fe phases in the sediment. We also observed that Tc(IV) remaining in solution during bioreduction was likely associated with colloidal magnetite nanoparticles. These findings highlight crucial links between Tc and Fe biogeochemical cycles that have significant implications for Tcs long-term environmental mobility, especially under ephemeral redox conditions.


Mineralogical Magazine | 2015

Effect of solution composition on the recrystallization of kaolinite to feldspathoids in hyperalkaline conditions: limitations of pertechnetate incorporation by ion competition effects

Janice Littlewood; Samuel Shaw; Pieter Bots; Caroline L. Peacock; Divyesh Trivedi; Ian T. Burke

Abstract The incorporation of pertechnetate (TcO4-) into feldspathoids produced by alkaline alteration of aluminosilicate clays may offer a potential treatment route for 99Tc-containing groundwater and liquors. Kaolinite was aged in NaOH to determine the effect of base concentration, temperature, and solution composition on mineral transformation and pertechnetate uptake. In all reactions, increased temperature and NaOH concentration increased the rate of kaolinite transformation to feldspathoid phases. In reactions containing only NaOH, sodalite was the dominant alteration product; however, small amounts (6-15%) of cancrinite also formed. In experiments containing NaOH/Cl and NaOH/NO3 mixtures, sodalite and nitrate cancrinite were crystallized (at 70°C), with no reaction intermediates. The addition of SO42- crystallized sulfatic sodalite at 40 and 50°C, but at higher temperatures (60 and 70°C) sulfatic sodalite transforms to vishnevite (sulfatic cancrinite). In experiments where a pertechnetate tracer was added (at ~1.5 μmol l-1), only 3-5% of the 99Tc was incorporated into the feldspathoid phases. This suggests that the larger pertechnetate anion was unable to compete as favourably for the internal vacancies with the smaller OH-, NO3-, SO42- or Cl- anions in solution, making this method likely to be unsuitable for groundwater treatment.

Collaboration


Dive into the Pieter Bots's collaboration.

Top Co-Authors

Avatar

Samuel Shaw

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge