Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter Monsieurs is active.

Publication


Featured researches published by Pieter Monsieurs.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans

Frank Reith; Barbara Etschmann; Cornelia Grosse; Hugo Moors; Mohammed A. Benotmane; Pieter Monsieurs; Gregor Grass; Christian J. Doonan; Stefan Vogt; Barry Lai; Gema Martinez-Criado; Graham N. George; Dietrich H. Nies; Max Mergeay; Allan Pring; Gordon Southam; Joël Brugger

While the role of microorganisms as main drivers of metal mobility and mineral formation under Earth surface conditions is now widely accepted, the formation of secondary gold (Au) is commonly attributed to abiotic processes. Here we report that the biomineralization of Au nanoparticles in the metallophillic bacterium Cupriavidus metallidurans CH34 is the result of Au-regulated gene expression leading to the energy-dependent reductive precipitation of toxic Au(III)-complexes. C. metallidurans, which forms biofilms on Au grains, rapidly accumulates Au(III)-complexes from solution. Bulk and microbeam synchrotron X-ray analyses revealed that cellular Au accumulation is coupled to the formation of Au(I)-S complexes. This process promotes Au toxicity and C. metallidurans reacts by inducing oxidative stress and metal resistances gene clusters (including a Au-specific operon) to promote cellular defense. As a result, Au detoxification is mediated by a combination of efflux, reduction, and possibly methylation of Au-complexes, leading to the formation of Au(I)-C-compounds and nanoparticulate Au0. Similar particles were observed in bacterial biofilms on Au grains, suggesting that bacteria actively contribute to the formation of Au grains in surface environments. The recognition of specific genetic responses to Au opens the way for the development of bioexploration and bioprocessing tools.


PLOS ONE | 2010

The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments

Paul Janssen; Rob Van Houdt; Hugo Moors; Pieter Monsieurs; Nicolas Morin; Arlette Michaux; Mohammed Abderrafi Benotmane; Natalie Leys; Tatiana Vallaeys; Alla Lapidus; Sébastien Monchy; Claudine Médigue; Safiyh Taghavi; Sean R. McCorkle; John J. Dunn; Daniel van der Lelie; Max Mergeay

Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.


Journal of Molecular Evolution | 2005

Comparison of the PhoPQ Regulon in Escherichia coli and Salmonella typhimurium

Pieter Monsieurs; Sigrid De Keersmaecker; William Wiley Navarre; Martin Bader; Frank De Smet; Michael McClelland; Ferric C. Fang; Bart De Moor; Jos Vanderleyden; Kathleen Marchal

The PhoPQ two-component system acts as a transcriptional regulator that responds to Mg2+ starvation both in Escherichia coli and Salmonella typhimurium (Garcia et al. 1996; Kato et al. 1999). By monitoring the availability of extracellular Mg2+, this two-component system allows S. typhimurium to sense the transition from an extracellular environment to a subcellular location. Concomitantly with this transition, a set of virulence factors essential for survival in the intracellular environment is activated by the PhoPQ system (Groisman et al. 1989; Miller et al. 1989). Compared to nonpathogenic strains, such as E. coli K12, the PhoPQ regulon in pathogens must contain target genes specifically contributing to the virulence phenotype. To verify this hypothesis, we compared the composition of the PhoPQ regulon between E. coli and S. typhimurium using a combination of expression experiments and motif data. PhoPQ-dependent genes in both organisms were identified from PhoPQ-related microarray experiments. To distinguish between direct and indirect targets, we searched for the presence of the regulatory motif in the promoter region of the identified PhoPQ-dependent genes. This allowed us to reconstruct the direct PhoPQ-dependent regulons in E. coli K12 and S. typhimurium LT2. Comparison of both regulons revealed a very limited overlap of PhoPQ-dependent genes between both organisms. These results suggest that the PhoPQ system has acquired a specialized function during evolution in each of these closely related species that allows adaptation to the specificities of their lifestyles (e.g., pathogenesis in S. typhimurium).


Peptides | 2004

Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters.

Gunter Dirix; Pieter Monsieurs; Bruno Dombrecht; Ruth Daniels; Kathleen Marchal; Jozef Vanderleyden; Jan Michiels

Quorum sensing (QS) in Gram-negative bacteria is generally assumed to be mediated by N-acyl-homoserine lactone molecules while Gram-positive bacteria make use of signaling peptides. We analyzed the occurrence in Gram-negative bacteria of peptides and transporters that are involved in quorum sensing in Gram-positive bacteria. Many class II bacteriocins and inducing factors produced by lactic acid bacteria (LAB) and competence stimulating peptides (CSPs) synthesized by streptococci are processed by their cognate ABC-transporters during their secretion. During transport, a conserved leader sequence, termed the double-glycine motif (GG-motif), is cleaved off by the N-terminal domain of the transporter, which belongs to the Peptidase C39 protein family. Several peptides containing a GG-motif were recently described in Gram-negative bacteria (Trends Microbiol 2001;9:164-8). To screen for additional putative GG-motif containing peptides, an in silico strategy based on MEME, HMMER2.2 and Wise2 was designed. Using a curated training set, a motif model of the leader peptide was built and used to screen over 120 fully sequenced bacterial genomes. The screening methodology was applied at the nucleotide level as probably many small peptide genes have not been annotated and may be absent from the non-redundant databases. It was found that 33% of the screened genomes of Gram-negative bacteria contained one or more transporters carrying a Peptidase C39 domain, compared to 44% of the genomes of Gram-positive bacteria. The transporters can be subdivided into four classes on the basis of their domain organization. Genes coding for putative peptides containing 23-142 amino acids and a GG-motif were found in close association with genes coding for Peptidase C39 domain containing proteins. These peptides show structural similarity to bacteriocins and peptide pheromones of Gram-positive bacteria. The possibility of signal transduction based on peptide signaling in Gram-negative bacteria is discussed.


Environmental Microbiology | 2010

Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation.

Aurélie Crabbé; Benny Pycke; Rob Van Houdt; Pieter Monsieurs; Cheryl A. Nickerson; Natalie Leys; Pierre Cornelis

As a ubiquitous environmental organism that is occasionally part of the human flora, Pseudomonas aeruginosa could pose a health hazard for the immunocompromised astronauts during long-term missions. Therefore, insights into the behaviour of P. aeruginosa under spaceflight conditions were gained using two spaceflight-analogue culture systems: the rotating wall vessel (RWV) and the random position machine (RPM). Microarray analysis of P. aeruginosa PAO1 grown in the low shear modelled microgravity (LSMMG) environment of the RWV, compared with the normal gravity control (NG), revealed an apparent regulatory role for the alternative sigma factor AlgU (RpoE-like). Accordingly, P. aeruginosa cultured in LSMMG exhibited increased alginate production and upregulation of AlgU-controlled transcripts, including those encoding stress-related proteins. The LSMMG increased heat and oxidative stress resistance and caused a decrease in the oxygen transfer rate of the culture. This study also showed the involvement of the RNA-binding protein Hfq in the LSMMG response, consistent with its previously identified role in the Salmonella LSMMG and spaceflight response. The global transcriptional response of P. aeruginosa grown in the RPM was highly similar to that in NG. Fluid mixing was assessed in both systems and is believed to be a pivotal factor contributing to transcriptional differences between RWV- and RPM-grown P. aeruginosa. This study represents the first step towards the identification of virulence mechanisms of P. aeruginosa activated in response to spaceflight-analogue conditions, and could direct future research regarding the risk assessment and prevention of Pseudomonas infections during spaceflight and in immunocompromised patients.


Genome Biology | 2004

In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection

Kathleen Marchal; Sigrid De Keersmaecker; Pieter Monsieurs; Nadja van Boxel; Karen Lemmens; Gert Thijs; Jos Vanderleyden; Bart De Moor

BackgroundThe PmrAB (BasSR) two-component regulatory system is required for Salmonella typhimurium virulence. PmrAB-controlled modifications of the lipopolysaccharide (LPS) layer confer resistance to cationic antibiotic polypeptides, which may allow bacteria to survive within macrophages. The PmrAB system also confers resistance to Fe3+-mediated killing. New targets of the system have recently been discovered that seem not to have a role in the well-described functions of PmrAB, suggesting that the PmrAB-dependent regulon might contain additional, unidentified targets.ResultsWe performed an in silico analysis of possible targets of the PmrAB system. Using a motif model of the PmrA binding site in DNA, genome-wide screening was carried out to detect PmrAB target genes. To increase confidence in the predictions, all putative targets were subjected to a cross-species comparison (phylogenetic footprinting) using a Gibbs sampling-based motif-detection procedure. As well as the known targets, we detected additional targets with unknown functions. Four of these were experimentally validated (yibD, aroQ, mig-13 and sseJ). Site-directed mutagenesis of the PmrA-binding site (PmrA box) in yibD revealed specific sequence requirements.ConclusionsWe demonstrated the efficiency of our procedure by recovering most of the known PmrAB-dependent targets and by identifying unknown targets that we were able to validate experimentally. We also pinpointed directions for further research that could help elucidate the S. typhimurium virulence pathway.


Biometals | 2011

Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network

Pieter Monsieurs; Hugo Moors; Rob Van Houdt; Paul Janssen; Ann Janssen; Ilse Coninx; Max Mergeay; Natalie Leys

The soil bacterium Cupriavidus metallidurans CH34 contains a high number of heavy metal resistance genes making it an interesting model organism to study microbial responses to heavy metals. In this study the transcriptional response of strain CH34 was measured when challenged to sub-lethal concentrations of various essential or toxic metals. Based on the global transcriptional responses for each challenge and the overlap in upregulated genes between different metal responses, the sixteen metals were clustered in three groups. In addition, the transcriptional response of already known metal resistance genes was assessed, and new metal response gene clusters were identified. The majority of the studied metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex interplay at transcriptional level between the different metal responses. The pronounced redundancy of these metal resistant regions—as illustrated by the large number of paralogous genes—combined with the phylogenetic distribution of these metal response regions within either evolutionary related or other metal resistant bacteria, provides important insights on the recent evolutionary forces shaping this naturally soil-dwelling bacterium into a highly metal-resistant strain well adapted to harsh and anthropogenic environments.


The ISME Journal | 2017

Absolute quantification of microbial taxon abundances

Ruben Props; Frederiek-Maarten Kerckhof; Peter Rubbens; Jo De Vrieze; Emma Hernandez Sanabria; Willem Waegeman; Pieter Monsieurs; Frederik Hammes; Nico Boon

High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.


Trends in Microbiology | 2003

Genome-specific higher-order background models to improve motif detection.

Kathleen Marchal; Gert Thijs; Sigrid De Keersmaecker; Pieter Monsieurs; Bart De Moor; Jozef Vanderleyden

Motif detection based on Gibbs sampling is a common procedure used to retrieve regulatory motifs in silico. Using a species-specific background model was previously shown to increase the robustness of the algorithm. Here, we demonstrate that selecting a non-species-adapted background model can have an adverse effect on the results of motif detection. The large differences in the average nucleotide composition of prokaryotic sequences exacerbate the problem of exchanging background models. Therefore, we have developed complex background models for all prokaryotic species with available genome sequences.


International Journal of Radiation Biology | 2013

Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses

Houssein El-Saghire; Hubert Thierens; Pieter Monsieurs; Arlette Michaux; Charlot Vandevoorde; Sarah Baatout

Abstract Purpose: Health risks from exposure to low doses of ionizing radiation (IR) are becoming a concern due to the rapidly growing medical applications of X-rays. Using microarray techniques, this study aims for a better understanding of whole blood response to low and high doses of IR. Materials and methods: Aliquots of peripheral blood samples were irradiated with 0, 0.05, and 1 Gy X-rays. RNA was isolated and prepared for microarray gene expression experiments. Bioinformatic approaches, i.e., univariate statistics and Gene Set Enrichment Analysis (GSEA) were used for analyzing the data generated. Seven differentially expressed genes were selected for further confirmation using quantitative real-time PCR (RT-PCR). Results: Functional analysis of genes differentially expressed at 0.05 Gy showed the enrichment of chemokine and cytokine signaling. However, responsive genes to 1 Gy were mainly involved in tumor suppressor protein 53 (p53) pathways. In a second approach, GSEA showed a higher statistical ranking of inflammatory and immune-related gene sets that are involved in both responding and/or secretion of growth factors, chemokines, and cytokines. This indicates the activation of the immune response. Whereas, gene sets enriched at 1 Gy were ‘classical’ radiation pathways like p53 signaling, apoptosis, DNA damage and repair. Comparative RT-PCR studies showed the significant induction of chemokine-related genes (PF4, GNG11 and CCR4) at 0.05 Gy and DNA damage and repair genes at 1 Gy (DDB2, AEN and CDKN1A). Conclusions: This study moves a step forward in understanding the different cellular responses to low and high doses of X-rays. In addition to that, and in a broader context, it addresses the need for more attention to the risk assessment of health effects resulting from the exposure to low doses of IR.

Collaboration


Dive into the Pieter Monsieurs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Van Houdt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Mysara

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart De Moor

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Kristel Mijnendonckx

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Sigrid De Keersmaecker

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gert Thijs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jeroen Raes

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge