Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter R. Cullis is active.

Publication


Featured researches published by Pieter R. Cullis.


Advanced Drug Delivery Reviews | 2013

Liposomal drug delivery systems: From concept to clinical applications☆

Theresa M. Allen; Pieter R. Cullis

The first closed bilayer phospholipid systems, called liposomes, were described in 1965 and soon were proposed as drug delivery systems. The pioneering work of countless liposome researchers over almost 5 decades led to the development of important technical advances such as remote drug loading, extrusion for homogeneous size, long-circulating (PEGylated) liposomes, triggered release liposomes, liposomes containing nucleic acid polymers, ligand-targeted liposomes and liposomes containing combinations of drugs. These advances have led to numerous clinical trials in such diverse areas as the delivery of anti-cancer, anti-fungal and antibiotic drugs, the delivery of gene medicines, and the delivery of anesthetics and anti-inflammatory drugs. A number of liposomes (lipidic nanoparticles) are on the market, and many more are in the pipeline. Lipidic nanoparticles are the first nanomedicine delivery system to make the transition from concept to clinical application, and they are now an established technology platform with considerable clinical acceptance. We can look forward to many more clinical products in the future.


Nature Biotechnology | 2010

Rational design of cationic lipids for siRNA delivery

Sean C. Semple; Akin Akinc; Jianxin Chen; Ammen Sandhu; Barbara L. Mui; Connie K Cho; Dinah Sah; Derrick Stebbing; Erin J Crosley; Ed Yaworski; Ismail Hafez; J. Robert Dorkin; June Qin; Kieu Lam; Kallanthottathil G. Rajeev; Kim F. Wong; Lloyd Jeffs; Lubomir Nechev; Merete L. Eisenhardt; Muthusamy Jayaraman; Mikameh Kazem; Martin Maier; Masuna Srinivasulu; Michael J Weinstein; Qingmin Chen; Rene Alvarez; Scott Barros; Soma De; Sandra K. Klimuk; Todd Borland

We adopted a rational approach to design cationic lipids for use in formulations to deliver small interfering RNA (siRNA). Starting with the ionizable cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA), a key lipid component of stable nucleic acid lipid particles (SNALP) as a benchmark, we used the proposed in vivo mechanism of action of ionizable cationic lipids to guide the design of DLinDMA-based lipids with superior delivery capacity. The best-performing lipid recovered after screening (DLin-KC2-DMA) was formulated and characterized in SNALP and demonstrated to have in vivo activity at siRNA doses as low as 0.01 mg/kg in rodents and 0.1 mg/kg in nonhuman primates. To our knowledge, this represents a substantial improvement over previous reports of in vivo endogenous hepatic gene silencing.


Angewandte Chemie | 2012

Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo

Muthusamy Jayaraman; Steven M. Ansell; Barbara L. Mui; Ying K. Tam; Jianxin Chen; Xinyao Du; David Butler; Laxman Eltepu; Shigeo Matsuda; Jayaprakash K. Narayanannair; Kallanthottathil G. Rajeev; Ismail Hafez; Akin Akinc; Martin Maier; Mark Tracy; Pieter R. Cullis; Thomas D. Madden; Muthiah Manoharan; Michael J. Hope

Special (lipid) delivery: The role of the ionizable lipid pK(a) in the in vivo delivery of siRNA by lipid nanoparticles has been studied with a large number of head group modifications to the lipids. A tight correlation between the lipid pK(a) value and silencing of the mouse FVII gene (FVII ED(50) ) was found, with an optimal pK(a) range of 6.2-6.5. The most potent cationic lipid from this study has ED(50) levels around 0.005 mg kg(-1) in mice and less than 0.03 mg kg(-1) in non-human primates.


Molecular therapy. Nucleic acids | 2012

Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA

Nathan M. Belliveau; Jens Huft; Paulo Jc Lin; Sam Chen; Alex K. K. Leung; Timothy Leaver; Andre Wild; Justin B. Lee; Robert James Taylor; Ying K. Tam; Carl L. Hansen; Pieter R. Cullis

Lipid nanoparticles (LNP) are the leading systems for in vivo delivery of small interfering RNA (siRNA) for therapeutic applications. Formulation of LNP siRNA systems requires rapid mixing of solutions containing cationic lipid with solutions containing siRNA. Current formulation procedures employ macroscopic mixing processes to produce systems 70-nm diameter or larger that have variable siRNA encapsulation efficiency, homogeneity, and reproducibility. Here, we show that microfluidic mixing techniques, which permit millisecond mixing at the nanoliter scale, can reproducibly generate limit size LNP siRNA systems 20u2009nm and larger with essentially complete encapsulation of siRNA over a wide range of conditions with polydispersity indexes as low as 0.02. Optimized LNP siRNA systems produced by microfluidic mixing achieved 50% target gene silencing in hepatocytes at a dose level of 10 µg/kg siRNA in mice. We anticipate that microfluidic mixing, a precisely controlled and readily scalable technique, will become the preferred method for formulation of LNP siRNA delivery systems.


Langmuir | 2012

Bottom-Up Design and Synthesis of Limit Size Lipid Nanoparticle Systems with Aqueous and Triglyceride Cores Using Millisecond Microfluidic Mixing

Igor V. Zhigaltsev; Nathan M. Belliveau; Ismail Hafez; Alex K. K. Leung; Jens Huft; Carl Hansen; Pieter R. Cullis

Limit size systems are defined as the smallest achievable aggregates compatible with the packing of the molecular constituents in a defined and energetically stable structure. Here we report the use of rapid microfluidic mixing for the controlled synthesis of two types of limit size lipid nanoparticle (LNP) systems, having either polar or nonpolar cores. Specifically, limit size LNP consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine (POPC), cholesterol and the triglyceride triolein were synthesized by mixing a stream of ethanol containing dissolved lipid with an aqueous stream, employing a staggered herringbone micromixer. Millisecond mixing of aqueous and ethanol streams at high flow rate ratios (FRR) was used to rapidly increase the polarity of the medium, driving bottom-up synthesis of limit size LNP systems by spontaneous assembly. For POPC/triolein systems the limit size structures consisted of a hydrophobic core of triolein surrounded by a monolayer of POPC where the diameter could be rationally engineered over the range 20-80 nm by varying the POPC/triolein ratio. In the case of POPC and POPC/cholesterol (55/45; mol/mol) the limit size systems achieved were bilayer vesicles of approximately 20 and 40 nm diameter, respectively. We further show that doxorubicin, a representative weak base drug, can be efficiently loaded and retained in limit size POPC LNP, establishing potential utility as drug delivery systems. To our knowledge this is the first report of stable triglyceride emulsions in the 20-50 nm size range, and the first time vesicular systems in the 20-50 nm size range have been generated by a scalable manufacturing method. These results establish microfluidic mixing as a powerful and general approach to access novel LNP systems, with both polar or nonpolar core structures, in the sub-100 nm size range.


Molecular Therapy | 2011

Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells.

Genc Basha; Tatiana Novobrantseva; Nicole Rosin; Yuen Yi C. Tam; Ismail Hafez; Matthew Wong; Tsukasa Sugo; Vera M. Ruda; June Qin; Boris Klebanov; Marco A. Ciufolini; Akin Akinc; Ying K. Tam; Michael J. Hope; Pieter R. Cullis

Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases.


Molecular Therapy | 2013

Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics

Martin Maier; Muthusamy Jayaraman; Shigeo Matsuda; Ju Liu; Scott Barros; William Querbes; Ying K. Tam; Steven M. Ansell; Varun Kumar; June Qin; Xuemei Zhang; Qianfan Wang; Sue Panesar; Renta Hutabarat; Mary Carioto; Julia Hettinger; Pachamuthu Kandasamy; David Butler; Kallanthottathil G. Rajeev; Bo Pang; Klaus Charisse; Kevin Fitzgerald; Barbara L. Mui; Xinyao Du; Pieter R. Cullis; Thomas D. Madden; Michael J. Hope; Muthiah Manoharan; Akin Akinc

In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available.


Molecular therapy. Nucleic acids | 2012

Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

Tatiana Novobrantseva; Anna Borodovsky; Jamie Wong; Boris Klebanov; Mohammad Zafari; Kristina Yucius; William Querbes; Pei Ge; Vera M. Ruda; Rick Duncan; Scott Barros; Genc Basha; Pieter R. Cullis; Akin Akinc; Jessica S. Donahoe; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Roman L. Bogorad; Kevin Love; Katie Whitehead; Chris Levins; Muthiah Manoharan; Filip K. Swirski; Ralph Weissleder; Robert Langer; Daniel G. Anderson; Antonin de Fougerolles; Matthias Nahrendorf; Victor Koteliansky

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.


Journal of Physical Chemistry C | 2012

Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core

Alex K. K. Leung; Ismail Hafez; Svetlana Baoukina; Nathan M. Belliveau; Igor V. Zhigaltsev; Elham Afshinmanesh; D. Peter Tieleman; Carl L. Hansen; Michael J. Hope; Pieter R. Cullis

Lipid nanoparticles (LNP) containing ionizable cationic lipids are the leading systems for enabling therapeutic applications of siRNA; however, the structure of these systems has not been defined. Here we examine the structure of LNP siRNA systems containing DLinKC2-DMA(an ionizable cationic lipid), phospholipid, cholesterol and a polyethylene glycol (PEG) lipid formed using a rapid microfluidic mixing process. Techniques employed include cryo-transmission electron microscopy, 31P NMR, membrane fusion assays, density measurements, and molecular modeling. The experimental results indicate that these LNP siRNA systems have an interior lipid core containing siRNA duplexes complexed to cationic lipid and that the interior core also contains phospholipid and cholesterol. Consistent with experimental observations, molecular modeling calculations indicate that the interior of LNP siRNA systems exhibits a periodic structure of aqueous compartments, where some compartments contain siRNA. It is concluded that LNP siRNA systems formulated by rapid mixing of an ethanol solution of lipid with an aqueous medium containing siRNA exhibit a nanostructured core. The results give insight into the mechanism whereby LNP siRNA systems are formed, providing an understanding of the high encapsulation efficiencies that can be achieved and information on methods of constructing more sophisticated LNP systems.


International Journal of Cancer | 2012

Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo

Justin B. Lee; Kaixin Zhang; Yuen Yi C. Tam; Ying K. Tam; Nathan M. Belliveau; Vanessa Y.C. Sung; Paulo J.C. Lin; Eric Leblanc; Marco A. Ciufolini; Paul S. Rennie; Pieter R. Cullis

The androgen receptor (AR) plays a critical role in the progression of prostate cancer. Silencing this protein using short‐hairpin RNA (shRNA) has been correlated with tumor growth inhibition and decreases in serum prostate specific antigen (PSA). In our study, we have investigated the ability of lipid nanoparticle (LNP) formulations of small‐interfering RNA (siRNA) to silence AR in human prostate tumor cell lines in vitro and in LNCaP xenograft tumors following intravenous (i.v.) injection. In vitro screening studies using a panel of cationic lipids showed that LNPs containing the ionizable cationic lipid 2,2‐dilinoleyl‐4‐(2‐dimethylaminoethyl)‐[1,3]‐dioxolane (DLin‐KC2‐DMA) exhibited the most potent AR silencing effects in LNCaP cells. This is attributed to an optimized ability of DLin‐KC2‐DMA‐containing LNP to be taken up into cells and to release the siRNA into the cell cytoplasm following endocytotic uptake. DLin‐KC2‐DMA LNPs were also effective in silencing the AR in a wild‐type AR expressing cell line, LAPC‐4, and a variant AR expressing cell line, CWR22Rv1. Importantly, it is demonstrated that LNP AR‐siRNA systems containing DLin‐KC2‐DMA can silence AR gene expression in distal LNCaP xenograft tumors and decrease serum PSA levels following i.v. injection. To our knowledge, this is the first report demonstrating the feasibility of LNP delivery of siRNA for silencing AR gene expression in vivo.

Collaboration


Dive into the Pieter R. Cullis's collaboration.

Top Co-Authors

Avatar

Michael J. Hope

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas D. Madden

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Lawrence D. Mayer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim F. Wong

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marco A. Ciufolini

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ismail Hafez

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sam Chen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven M. Ansell

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge