Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas D. Madden is active.

Publication


Featured researches published by Thomas D. Madden.


Nature Biotechnology | 2010

Rational design of cationic lipids for siRNA delivery

Sean C. Semple; Akin Akinc; Jianxin Chen; Ammen Sandhu; Barbara L. Mui; Connie K Cho; Dinah Sah; Derrick Stebbing; Erin J Crosley; Ed Yaworski; Ismail Hafez; J. Robert Dorkin; June Qin; Kieu Lam; Kallanthottathil G. Rajeev; Kim F. Wong; Lloyd Jeffs; Lubomir Nechev; Merete L. Eisenhardt; Muthusamy Jayaraman; Mikameh Kazem; Martin Maier; Masuna Srinivasulu; Michael J Weinstein; Qingmin Chen; Rene Alvarez; Scott Barros; Soma De; Sandra K. Klimuk; Todd Borland

We adopted a rational approach to design cationic lipids for use in formulations to deliver small interfering RNA (siRNA). Starting with the ionizable cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA), a key lipid component of stable nucleic acid lipid particles (SNALP) as a benchmark, we used the proposed in vivo mechanism of action of ionizable cationic lipids to guide the design of DLinDMA-based lipids with superior delivery capacity. The best-performing lipid recovered after screening (DLin-KC2-DMA) was formulated and characterized in SNALP and demonstrated to have in vivo activity at siRNA doses as low as 0.01 mg/kg in rodents and 0.1 mg/kg in nonhuman primates. To our knowledge, this represents a substantial improvement over previous reports of in vivo endogenous hepatic gene silencing.


Angewandte Chemie | 2012

Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo

Muthusamy Jayaraman; Steven M. Ansell; Barbara L. Mui; Ying K. Tam; Jianxin Chen; Xinyao Du; David Butler; Laxman Eltepu; Shigeo Matsuda; Jayaprakash K. Narayanannair; Kallanthottathil G. Rajeev; Ismail Hafez; Akin Akinc; Martin Maier; Mark Tracy; Pieter R. Cullis; Thomas D. Madden; Muthiah Manoharan; Michael J. Hope

Special (lipid) delivery: The role of the ionizable lipid pK(a) in the in vivo delivery of siRNA by lipid nanoparticles has been studied with a large number of head group modifications to the lipids. A tight correlation between the lipid pK(a) value and silencing of the mouse FVII gene (FVII ED(50) ) was found, with an optimal pK(a) range of 6.2-6.5. The most potent cationic lipid from this study has ED(50) levels around 0.005 mg kg(-1) in mice and less than 0.03 mg kg(-1) in non-human primates.


Chemistry and Physics of Lipids | 1990

The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey

Thomas D. Madden; P. Richard Harrigan; Linda C.L. Tai; Marcel B. Bally; Lawrence D. Mayer; Tom E. Redelmeier; Helen Loughrey; Colin Tilcock; Reinish Lw; Pieter R. Cullis

We have shown previously that transmembrane proton gradients can be used to efficiently accumulate biogenic amines [M.B. Bally et al. (1988) Chem. Phys. Lipids 47, 97-107] and doxorubicin [L.D. Mayer, M.B. Bally and P.R. Cullis (1986) Biochim. Biophys. Acta 857, 123-126] to high concentrations within liposomes. To determine the generality of this loading procedure, representative drugs from a variety of different classes (antineoplastics, local anaesthetics, antihistamines, etc.) were examined as to their ability to redistribute in response to a proton gradient. While the majority of drugs examined, all of which are weak bases, were accumulated by large unilamellar vesicles exhibiting a pH gradient (interior acid) the extent of uptake varied considerably between different pharmaceuticals. These differences are discussed in the context of various factors which will likely influence drug accumulation including its membrane/water partition coefficient and its solubility in the intravesicular medium.


Methods in Enzymology | 2005

The liposomal formulation of doxorubicin.

Sheela A. Abraham; Dawn Waterhouse; Lawrence D. Mayer; Pieter R. Cullis; Thomas D. Madden; Marcel B. Bally

Doxorubicin is the best known and most widely used member of the anthracycline antibiotic group of anticancer agents. It was first introduced in the 1970s, and since that time has become one of the most commonly used drugs for the treatment of both hematological and solid tumors. The therapy-limiting toxicity for this drug is cardiomyopathy, which may lead to congestive heart failure and death. Approximately 2% of patients who have received a cumulative (lifetime) doxorubicin dose of 450-500 mg?m(2) will experience this condition. An approach to ameliorating doxorubicin-related toxicity is to use drug carriers, which engender a change in the pharmacological distribution of the drug, resulting in reduced drug levels in the heart. Examples of these carrier systems include lipid-based (liposome) formulations that effect a beneficial change in doxorubicin biodistribution, with two formulations approved for clinical use. Drug approval was based, in part, on data suggesting that beneficial changes in doxorubicin occurred in the absence of decreased therapeutic activity. Preclinical (animal) and clinical (human) studies showing that liposomes can preferentially accumulate in tumors have provided a rationale for improved activity. Liposomes represent ideal drug delivery systems, as the microvasculature in tumors is typically discontinuous, having pore sizes (100-780 nm) large enough for liposomes to move from the blood compartment into the extravascular space surrounding the tumor cells. Liposomes, in the size range of 100-200 nm readily extravasate within the site of tumor growth to provide locally concentrated drug delivery, a primary role of liposomal formulation. Although other liposomal drugs have been prepared and characterized due to the potential for liposomes to improve antitumor potency of the encapsulated drug, the studies on liposomal doxorubicin have been developed primarily to address issues of acute and chronic toxicity that occur as a consequence of using this drug. It is important to recognize that research programs directed toward the development of liposomal doxorubicin occurred concurrently with synthetic chemistry programs attempting to introduce safer and more effective anthracycline analogues. Although many of these drugs are approved for use, and preliminary liposomal formulations of these analogues have been prepared, doxorubicin continues to be a mainstay of drug cocktails used in the management of most solid tumors. It will be of great interest to observe how the approved formulations of liposomal doxorubicin are integrated into combination regimes for treatment of cancer. In the meantime, we have learned a great deal about liposomes as drug carriers from over 20 years of research on different liposomal doxorubicin formulations, the very first of which were identified in the late 1970s. This chapter will discuss the various methods for encapsulation of doxorubicin into liposomes, as well as some of the important interactions between the formulation components of the drug and how this may impact the biological activity of the associated drug. This review of methodology, in turn, will highlight research activities that are being pursued to achieve better performance parameters for liposomal formulations of doxorubicin, as well as other anticancer agents being considered for use with lipid-based carriers.


Biochimica et Biophysica Acta | 1997

Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles

Pieter R. Cullis; Michael J. Hope; Marcel B. Bally; Thomas D. Madden; Lawrence D. Mayer; David B. Fenske

Pieter R. Cullis , Michael J. Hope , Marcel B. Bally , Thomas D. Madden , Lawrence D. Mayer , David B. Fenske a a Department of Biochemistry and Molecular Biology, UniOersity of British Columbia, VancouOer, B.C., Canada V6T 1Z3 b Inex Pharmaceuticals Corporation, 1779 West 75th AOenue, VancouOer, B.C., Canada V6P 6P2 c British Columbia Cancer Agency, DiOision of Medical Oncology, VancouOer, B.C., Canada V5Z 4E6 d Department of Pharmacology and Therapeutics, UniOersity of British Columbia, VancouOer, B.C., Canada V6T 1Z3


Biochimica et Biophysica Acta | 1985

Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents

Thomas D. Madden; Marcel B. Bally; Michael J. Hope; Pieter R. Cullis; Hugh P. Schieren; Andrew S. Janoff

The ability of trehalose and other sugars to maintain the integrity of large unilamellar vesicles subjected to dehydration and rehydration has been investigated. It is shown, employing freeze-fracture techniques, that large unilamellar vesicles prepared in the presence of trehalose at 125 mM or higher concentration do not exhibit significant structural changes during the dehydration-rehydration cycle. Further, up to 90% of entrapped 22Na or [3H]inulin is retained during this process. Other sugars also exhibited similar protective effects where trehalose was most effective, followed by sucrose, maltose, glucose and lactose. It is demonstrated that proton or Na+/K+ electrochemical gradients can be maintained during the dehydration-rehydration process, which can subsequently be used to drive the uptake of lipophilic cationic drugs such as adriamycin. The implications for long-term storage of liposomal systems for use in drug-delivery protocols are discussed.


Nature | 2017

Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination

Norbert Pardi; Michael J. Hogan; Rebecca S. Pelc; Hiromi Muramatsu; Hanne Andersen; Christina R. DeMaso; Kimberly A. Dowd; Laura L. Sutherland; Richard M. Scearce; Robert Parks; Wendeline Wagner; Alex Granados; Jack Greenhouse; Michelle Walker; Elinor Willis; Jae-Sung Yu; Charles E. McGee; Gregory D. Sempowski; Barbara L. Mui; Ying K. Tam; Yan-Jang Huang; Dana L. Vanlandingham; Veronica M. Holmes; Harikrishnan Balachandran; Sujata Sahu; Michelle A. Lifton; Stephen Higgs; Scott E. Hensley; Thomas D. Madden; Michael J. Hope

Zika virus (ZIKV) has recently emerged as a pandemic associated with severe neuropathology in newborns and adults. There are no ZIKV-specific treatments or preventatives. Therefore, the development of a safe and effective vaccine is a high priority. Messenger RNA (mRNA) has emerged as a versatile and highly effective platform to deliver vaccine antigens and therapeutic proteins. Here we demonstrate that a single low-dose intradermal immunization with lipid-nanoparticle-encapsulated nucleoside-modified mRNA (mRNA–LNP) encoding the pre-membrane and envelope glycoproteins of a strain from the ZIKV outbreak in 2013 elicited potent and durable neutralizing antibody responses in mice and non-human primates. Immunization with 30 μg of nucleoside-modified ZIKV mRNA–LNP protected mice against ZIKV challenges at 2 weeks or 5 months after vaccination, and a single dose of 50 μg was sufficient to protect non-human primates against a challenge at 5 weeks after vaccination. These data demonstrate that nucleoside-modified mRNA–LNP elicits rapid and durable protective immunity and therefore represents a new and promising vaccine candidate for the global fight against ZIKV.


Nature Biotechnology | 1999

Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity

Gitanjali Adlakha-Hutcheon; Marcel B. Bally; Clifford Shew; Thomas D. Madden

Programmable fusogenic vesicles (PFVs) are lipid-based drug-delivery systems that exhibit time-dependent destabilization. The rate at which this destabilization occurs is determined by the exchange rate of a bilayer-stabilizing component, polyethylene glycol-phosphatidylethanolamine (PEG-PE) from the vesicle surface. This exchange rate is controlled, in turn, by the acyl chain composition of the PEG-PE. We describe in vitro and in vivo studies using PFVs as delivery vehicles for the anticancer drug mitoxantrone. We demonstrate that the PEG-PE acyl composition determined the rate at which PFVs are eliminated from plasma after intravenous administration, and the rate of mitoxantrone leakage from PFV. The nature of the PEG-PE component also determined the antitumor efficacy of mitoxantrone-loaded PFV in murine and human in murine and human xenograft tumor models. Increased circulation time and improved activity were obtained for PFV containing PEG-PE with an 18-carbon acyl chain length, as a result of slower vesicle destabilization.


Chemistry and Physics of Lipids | 1990

Protection of liposomes during dehydration or freezing

P.R. Harrigan; Thomas D. Madden; Pieter R. Cullis

When liposomes are subjected to dehydration or freeze-thawing, vesicle fusion and/or leakage of vesicle contents can occur. The disaccharide, trehalose and the cryoprotectant, glycerol, are known to protect vesicle integrity during dehydration and freezing respectively. Here we examine their protective abilities as a function of vesicle size and lipid composition. It is shown that fatty acyl composition, cholesterol content and, with the exception of phosphatidylglycerol, acidic lipid content do not significantly alter the retention of aqueous contents by vesicles dehydrated and rehydrated in the presence of trehalose. The susceptibility to leakage induced by both dehydration and freezing is, however, critically dependent upon vesicle size with the smallest systems (70-100 nm diameter) being most stable. The mechanism whereby trehalose protects against vesicle fusion and leakage is also discussed.


Biophysical Journal | 1995

Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles

Barbara Mui; Hans-Günther Döbereiner; Thomas D. Madden; Pieter R. Cullis

The morphological consequences of differences in the monolayer surface areas of large unilamellar vesicles (LUVs) have been examined employing cryoelectron microscopy techniques. Surface area was varied by inducing net transbilayer transport of dioleoylphosphatidylglycerol (DOPG) in dioleoylphosphatidylcholine (DOPC):DOPG (9:1, mol:mol) LUVs in response to transmembrane pH gradients. It is shown that when DOPG is transported from the inner to the outer monolayer, initially invaginated LUVs are transformed to long narrow tubular structures, or spherical structures with one or more protrusions. Tubular structures are also seen in response to outward DOPG transport in DOPC:DOPG:Chol (6:1:3, mol:mol:mol) LUV systems, and when lyso-PC is allowed to partition into the exterior monolayer of DOPC:DOPG (9:1, mol:mol) LUVs in the absence of DOPG transport. Conversely, when the inner monolayer area is expanded by the transport of DOPG from the outer monolayer to the inner monolayer of non-invaginated LUVs, a reversion to invaginated structures is observed. The morphological changes are well described by an elastic bending theory of the bilayer. Identification of the difference in relaxed monolayer areas and of the volume-to-area ratio of the LUVs as the shape-determining factors allows a quantitative classification of the observed morphologies. The morphology seen in LUVs supports the possibility that factors leading to differences in monolayer surface areas could play important roles in intracellular membrane transport processes.

Collaboration


Dive into the Thomas D. Madden's collaboration.

Top Co-Authors

Avatar

Michael J. Hope

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Pieter R. Cullis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean C. Semple

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Barbara Mui

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Pieter R. Cullis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jianxin Chen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco A. Ciufolini

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ying K. Tam

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge