Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter Vanden Berghe is active.

Publication


Featured researches published by Pieter Vanden Berghe.


Journal of Clinical Investigation | 2011

Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury

Catia Laranjeira; Katarina Sandgren; Nicoletta Kessaris; William D. Richardson; Alexandre J. Potocnik; Pieter Vanden Berghe; Vassilis Pachnis

The enteric nervous system (ENS) in mammals forms from neural crest cells during embryogenesis and early postnatal life. Nevertheless, multipotent progenitors of the ENS can be identified in the adult intestine using clonal cultures and in vivo transplantation assays. The identity of these neurogenic precursors in the adult gut and their relationship to the embryonic progenitors of the ENS are currently unknown. Using genetic fate mapping, we here demonstrate that mouse neural crest cells marked by SRY box-containing gene 10 (Sox10) generate the neuronal and glial lineages of enteric ganglia. Most neurons originated from progenitors residing in the gut during mid-gestation. Afterward, enteric neurogenesis was reduced, and it ceased between 1 and 3 months of postnatal life. Sox10-expressing cells present in the myenteric plexus of adult mice expressed glial markers, and we found no evidence that these cells participated in neurogenesis under steady-state conditions. However, they retained neurogenic potential, as they were capable of generating neurons with characteristics of enteric neurons in culture. Furthermore, enteric glia gave rise to neurons in vivo in response to chemical injury to the enteric ganglia. Our results indicate that despite the absence of constitutive neurogenesis in the adult gut, enteric glia maintain limited neurogenic potential, which can be activated by tissue dissociation or injury.


Nature Medicine | 2011

HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease

Constantin d'Ydewalle; Jyothsna Krishnan; Driss Chiheb; Philip Van Damme; Joy Irobi; Alan P. Kozikowski; Pieter Vanden Berghe; Vincent Timmerman; Wim Robberecht; Ludo Van Den Bosch

Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. Mutations in the 27-kDa small heat-shock protein gene (HSPB1) cause axonal CMT or distal hereditary motor neuropathy (distal HMN). We developed and characterized transgenic mice expressing two different HSPB1 mutations (S135F and P182L) in neurons only. These mice showed all features of CMT or distal HMN dependent on the mutation. Expression of mutant HSPB1 decreased acetylated α-tubulin abundance and induced severe axonal transport deficits. An increase of α-tubulin acetylation induced by pharmacological inhibition of histone deacetylase 6 (HDAC6) corrected the axonal transport defects caused by HSPB1 mutations and rescued the CMT phenotype of symptomatic mutant HSPB1 mice. Our findings demonstrate the pathogenic role of α-tubulin deacetylation in mutant HSPB1–induced neuropathies and offer perspectives for using HDAC6 inhibitors as a therapeutic strategy for hereditary axonopathies.


Gut | 2014

A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen

Gianluca Matteoli; Pedro J. Gomez-Pinilla; Andrea Nemethova; Martina Di Giovangiulio; Cathy Cailotto; Sjoerd H. van Bree; Klaus Michel; Kevin J. Tracey; Michael Schemann; Werend Boesmans; Pieter Vanden Berghe; Guy E. Boeckxstaens

The cholinergic anti-inflammatory pathway (CAIP) has been proposed as a key mechanism by which the brain, through the vagus nerve, modulates the immune system in the spleen. Vagus nerve stimulation (VNS) reduces intestinal inflammation and improves postoperative ileus. We investigated the neural pathway involved and the cells mediating the anti-inflammatory effect of VNS in the gut. The effect of VNS on intestinal inflammation and transit was investigated in wild-type, splenic denervated and Rag-1 knockout mice. To define the possible role of α7 nicotinic acetylcholine receptor (α7nAChR), we used knockout and bone marrow chimaera mice. Anterograde tracing of vagal efferents, cell sorting and Ca2+ imaging were used to reveal the intestinal cells targeted by the vagus nerve. VNS attenuates surgery-induced intestinal inflammation and improves postoperative intestinal transit in wild-type, splenic denervated and T-cell-deficient mice. In contrast, VNS is ineffective in α7nAChR knockout mice and α7nAChR-deficient bone marrow chimaera mice. Anterograde labelling fails to detect vagal efferents contacting resident macrophages, but shows close contacts between cholinergic myenteric neurons and resident macrophages expressing α7nAChR. Finally, α7nAChR activation modulates ATP-induced Ca2+ response in small intestine resident macrophages. We show that the anti-inflammatory effect of the VNS in the intestine is independent of the spleen and T cells. Instead, the vagus nerve interacts with cholinergic myenteric neurons in close contact with the muscularis macrophages. Our data suggest that intestinal muscularis resident macrophages expressing α7nAChR are most likely the ultimate target of the gastrointestinal CAIP.


Gut | 2007

Critical role of stress in increased oesophageal mucosa permeability and dilated intercellular spaces

Ricard Farré; R. Vos; Karel Geboes; Kristine Verbecke; Pieter Vanden Berghe; Inge Depoortere; Kathleen Blondeau; Jan Tack; Daniel Sifrim

Background: In patients with non-erosive gastroesophageal reflux disease, heartburn can occur when acid reaches sensory nerve endings through oesophageal-mucosa-dilated intercellular spaces. Stressful life events may increase heartburn perception. In the rat, acute stress increases gastric and intestinal mucosa permeability. We investigated whether acute stress can also increase oesophageal mucosa permeability and contribute to the dilation of mucosa intercellular spaces. Methods: Male Sprague–Dawley rats were submitted to partial restraint stress. Oesophageal mucosa from stressed and control rats was mounted in diffusion chambers. The permeability to 51Cr-EDTA (400 Da), fluorescein isothiocyanate (FITC)-dextran 4000 Da (FD4) and FITC-dextran 20 000 Da (FD20) was assessed after tissue incubation either with Krebs (control) or HCl pH 2.0+ pepsin 1 mg/ml. The diameter of intercellular spaces was assessed using transmission electron microscopy. Results: Acute stress increased faecal output, small-intestinal permeability and glycaemia. Exposure of oesophageal mucosa from control rats to acid-pepsin did not increase permeability to any of the tested molecules. Stress increased the number of submucosal mast cells and, by itself, increased the permeability to the smallest molecule (22.8±7.1 pmol/cm2 vs 5.8±2.1 pmol/cm2) (p<0.001). Exposure of mucosa from stressed rats to acid-pepsin significantly increased permeability to all molecules tested. Electron microscopy showed dilated intercellular spaces only in mucosa from stressed rats (with and without exposure to acid-pepsin). Conclusions: Acute stress can increase, by itself, oesophageal mucosa permeability. There is a potentiation between stress and exposure of the oesophageal mucosa to acid-pepsin, leading to increased permeability and dilated intercellular spaces.


The FASEB Journal | 2010

Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione

Hind Abdo; Pascal Derkinderen; Priya Martina Gomes; Julien Chevalier; Philippe Aubert; Damien Masson; Jean-Paul Galmiche; Pieter Vanden Berghe; Michel Neunlist; Bernard Lardeux

Enteric glial cells (EGCs) are essential in the control of gastrointestinal functions. Although lesions of EGCs are associated with neuronal degeneration in animal models, their direct neuroprotective role remains unknown. Therefore, the aims of this study were to demonstrate the direct neuroprotective effects of EGCs and to identify putative glial mediators involved. First, viral targeted ablation of EGCs in primary cultures of enteric nervous system increased neuronal death both under basal conditions and in the presence of oxidative stress (dopamine, hydrogen peroxide). Second, direct or indirect coculture experiments of EGC lines with primary cultures of enteric nervous system or neuroblastoma cell lines (SH‐SY5Y) prevented neurotoxic effects induced by oxidative stress (increased membrane permeability, release of neuronal specific enolase, caspase‐3 immunoreactivity, changes in [Ca2+]i response). Finally, combining pharmacological inhibition and mRNA silencing methods, we demonstrated that neuroprotective effects of EGCs were mediated in part by reduced glutathione but not by oxidized glutathione or by S‐nitrosoglutathione. Our study identified the neuroprotective effects of EGCs via their release of reduced glutathione, extending their critical role in physiological contexts and in enteric neuropathies.—Abdo, H., Derkinderen, P., Gomes, P., Chevalier, J., Aubert, P., Masson, D., Galmiche, J.‐P., Vanden Berghe, P., Neunlist, M., Lardeux, B. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J. 24, 1082‐1094 (2010). www.fasebj.org


Glia | 2015

Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.

Werend Boesmans; Reena Lasrado; Pieter Vanden Berghe; Vassilis Pachnis

Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca2+ imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co‐express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. GLIA 2015;63:229–241


Journal of Cell Science | 2015

LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism

Amaia M. Arranz; Lore Delbroek; Kristof Van Kolen; Marco R. Guimarães; Wim Mandemakers; Guy Daneels; Samer Matta; Sara Calafate; Hamdy Shaban; Pieter Baatsen; Pieter-Jan De Bock; Kris Gevaert; Pieter Vanden Berghe; Patrik Verstreken; Bart De Strooper; Diederik W. Moechars

ABSTRACT Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinsons disease, but the precise physiological function of the protein remains ill-defined. Recently, our group proposed a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses in the Drosophila melanogaster neuromuscular junctions. Flies harbor only one Lrrk gene, which might encompass the functions of both mammalian LRRK1 and LRRK2. We therefore studied the role of LRRK2 in mammalian synaptic function and provide evidence that knockout or pharmacological inhibition of LRRK2 results in defects in synaptic vesicle endocytosis, altered synaptic morphology and impairments in neurotransmission. In addition, our data indicate that mammalian endophilin A1 (EndoA1, also known as SH3GL2) is phosphorylated by LRRK2 in vitro at T73 and S75, two residues in the BAR domain. Hence, our results indicate that LRRK2 kinase activity has an important role in the regulation of clathrin-mediated endocytosis of synaptic vesicles and subsequent neurotransmission at the synapse.


British Journal of Pharmacology | 2011

TRP channels in neurogastroenterology: opportunities for therapeutic intervention

Werend Boesmans; Grzegorz Owsianik; Jan Tack; Thomas Voets; Pieter Vanden Berghe

The members of the superfamily of transient receptor potential (TRP) cation channels are involved in a plethora of cellular functions. During the last decade, a vast amount of evidence is accumulating that attributes an important role to these cation channels in different regulatory aspects of the alimentary tract. In this review we discuss the expression patterns and roles of TRP channels in the regulation of gastrointestinal motility, enteric nervous system signalling and visceral sensation, and provide our perspectives on pharmacological targeting of TRPs as a strategy to treat various gastrointestinal disorders. We found that the current knowledge about the role of some members of the TRP superfamily in neurogastroenterology is rather limited, whereas the function of other TRP channels, especially of those implicated in smooth muscle cell contractility (TRPC4, TRPC6), visceral sensitivity and hypersensitivity (TRPV1, TRPV4, TRPA1), tends to be well established. Compared with expression data, mechanistic information about TRP channels in intestinal pacemaking (TRPC4, TRPC6, TRPM7), enteric nervous system signalling (TRPCs) and enteroendocrine cells (TRPM5) is lacking. It is clear that several different TRP channels play important roles in the cellular apparatus that controls gastrointestinal function. They are involved in the regulation of gastrointestinal motility and absorption, visceral sensation and visceral hypersensitivity. TRP channels can be considered as interesting targets to tackle digestive diseases, motility disorders and visceral pain. At present, TRPV1 antagonists are under development for the treatment of heartburn and visceral hypersensitivity, but interference with other TRP channels is also tempting. However, their role in gastrointestinal pathophysiology first needs to be further elucidated.


Gut | 2008

Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system

Werend Boesmans; Priya Martina Gomes; Jozef Janssens; Jan Tack; Pieter Vanden Berghe

Background: Besides its role in neuronal growth and differentiation, brain-derived neurotrophic factor (BDNF) has been implicated in the control of peristalsis where it serves to enhance gastrointestinal motility. Aim: To unravel the cellular mechanisms governing BDNF’s effect on motility. Methods: Studies were performed in primary myenteric neuron cultures and whole-mount preparations derived from guinea pig ileum. Expression of BDNF and its tropomyosin-related kinase B (TrkB) receptor was assessed by immunohistochemistry. Intracellular Ca2+ concentration ([Ca2+]i) changes in myenteric neurons were monitored using Fluo-4, and neurotransmitter release kinetics at enteric synapses were evaluated with FM1-43 imaging. Results: Immunohistochemistry revealed the presence of BDNF and TrkB in mucosa, submucosal plexus and myenteric ganglia. Primary cultures also expressed BDNF and TrkB and were used to study the physiological effects of BDNF. None of the neurons studied displayed a [Ca2+]i change when challenged with BDNF. However, BDNF exposure caused an enhancement of Ca2+ transients induced by serotonin and substance P, which was reversed by the Trk receptor blocker K-252a (0.1 μM). BDNF exposure also resulted in an amplification of spontaneous network activity which was reflected in an increased number of synaptic vesicle clusters. Furthermore, BDNF treatment facilitated FM1-43-labelled vesicle destaining in enteric terminals during field stimulation. Conclusions: The findings demonstrate that BDNF is able to enhance rather than directly activate enteric nervous system signalling. Therefore, the promotion of motility by BDNF seems to result from its potent modulating role on enteric neuronal activity and synaptic communication.


Journal of Clinical Investigation | 2013

Planar cell polarity genes control the connectivity of enteric neurons

Valentina Sasselli; Werend Boesmans; Pieter Vanden Berghe; Fadel Tissir; André M. Goffinet; Vassilis Pachnis

A highly complex network of intrinsic enteric neurons is required for the digestive and homeostatic functions of the gut. Nevertheless, the genetic and molecular mechanisms that regulate their assembly into functional neuronal circuits are currently unknown. Here we report that the planar cell polarity (PCP) genes Celsr3 and Fzd3 are required during murine embryogenesis to specifically control the guidance and growth of enteric neuronal projections relative to the longitudinal and radial gut axes. Ablation of these genes disrupts the normal organization of nascent neuronal projections, leading to subtle changes of axonal tract configuration in the mature enteric nervous system (ENS), but profound abnormalities in gastrointestinal motility. Our data argue that PCP-dependent modules of connectivity established at early stages of enteric neurogenesis control gastrointestinal function in adult animals and provide the first evidence that developmental deficits in ENS wiring may contribute to the pathogenesis of idiopathic bowel disorders.

Collaboration


Dive into the Pieter Vanden Berghe's collaboration.

Top Co-Authors

Avatar

Jan Tack

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Werend Boesmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Inge Depoortere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rita Vos

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ricard Farré

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Carla Cirillo

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jozef Janssens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Daniel Sifrim

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Emidio Scarpellini

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge