Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pietro Genovese is active.

Publication


Featured researches published by Pietro Genovese.


Nature Biotechnology | 2011

An unbiased genome-wide analysis of zinc-finger nuclease specificity

Richard Gabriel; Angelo Lombardo; Anne Arens; Jeffrey C. Miller; Pietro Genovese; Christine Kaeppel; Ali Nowrouzi; Cynthia C. Bartholomae; Jianbin Wang; Geoffrey Friedman; Michael C. Holmes; Philip D. Gregory; Hanno Glimm; Manfred Schmidt; Luigi Naldini; Christof von Kalle

Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.


Nature | 2014

Targeted genome editing in human repopulating haematopoietic stem cells

Pietro Genovese; Giulia Schiroli; Giulia Escobar; Tiziano Di Tomaso; Claudia Firrito; Andrea Calabria; Davide Moi; Roberta Mazzieri; Chiara Bonini; Michael C. Holmes; Philip D. Gregory; Mirjam van der Burg; Bernhard Gentner; Eugenio Montini; Angelo Lombardo; Luigi Naldini

Targeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating haematopoietic stem cells (HSCs) has remained elusive. Here we show that poor permissiveness to gene transfer and limited proficiency of the homology-directed DNA repair pathway constrain gene targeting in human HSCs. By tailoring delivery platforms and culture conditions we overcame these barriers and provide stringent evidence of targeted integration in human HSCs by long-term multilineage repopulation of transplanted mice. We demonstrate the therapeutic potential of our strategy by targeting a corrective complementary DNA into the IL2RG gene of HSCs from healthy donors and a subject with X-linked severe combined immunodeficiency (SCID-X1). Gene-edited HSCs sustained normal haematopoiesis and gave rise to functional lymphoid cells that possess a selective growth advantage over those carrying disruptive IL2RG mutations. These results open up new avenues for treating SCID-X1 and other diseases.


Nature Medicine | 2012

Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer

Elena Provasi; Pietro Genovese; Angelo Lombardo; Zulma Magnani; Pei Qi Liu; Andreas Reik; Victoria Chu; David Paschon; Lei Zhang; Jürgen Kuball; Barbara Camisa; Attilio Bondanza; Giulia Casorati; Maurilio Ponzoni; Fabio Ciceri; Claudio Bordignon; Philip D. Greenberg; Michael C. Holmes; Philip D. Gregory; Luigi Naldini; Chiara Bonini

The transfer of high-avidity T cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted antigen specificities of the resultant TCRs. We designed zinc-finger nucleases (ZFNs) that promoted the disruption of endogenous TCR β- and α-chain genes. Lymphocytes treated with ZFNs lacked surface expression of CD3-TCR and expanded with the addition of interleukin-7 (IL-7) and IL-15. After lentiviral transfer of a TCR specific for the Wilms tumor 1 (WT1) antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near purity and were superior at specific antigen recognition compared to donor-matched, unedited TCR-transferred cells. In contrast to unedited TCR-transferred cells, the TCR-edited lymphocytes did not mediate off-target reactivity while maintaining their anti-tumor activity in vivo, thus showing that complete editing of T cell specificity generates tumor-specific lymphocytes with improved biosafety profiles.


Nature Methods | 2011

Site-specific integration and tailoring of cassette design for sustainable gene transfer

Angelo Lombardo; Daniela Cesana; Pietro Genovese; Bruno Di Stefano; Elena Provasi; Daniele F Colombo; Margherita Neri; Zulma Magnani; Alessio Cantore; Pietro Lo Riso; Martina Damo; Oscar M Pello; Michael C. Holmes; Philip D. Gregory; Angela Gritti; Vania Broccoli; Chiara Bonini; Luigi Naldini

Integrative gene transfer methods are limited by variable transgene expression and by the consequences of random insertional mutagenesis that confound interpretation in gene-function studies and may cause adverse events in gene therapy. Site-specific integration may overcome these hurdles. Toward this goal, we studied the transcriptional and epigenetic impact of different transgene expression cassettes, targeted by engineered zinc-finger nucleases to the CCR5 and AAVS1 genomic loci of human cells. Analyses performed before and after integration defined features of the locus and cassette design that together allow robust transgene expression without detectable transcriptional perturbation of the targeted locus and its flanking genes in many cell types, including primary human lymphocytes. We thus provide a framework for sustainable gene transfer in AAVS1 that can be used for dependable genetic manipulation, neutral marking of the cell and improved safety of therapeutic applications, and demonstrate its feasibility by rapidly generating human lymphocytes and stem cells carrying targeted and benign transgene insertions.


Blood | 2013

CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma

Monica Casucci; Benedetta Nicolis di Robilant; Laura Falcone; Barbara Camisa; Margherita Norelli; Pietro Genovese; Bernhard Gentner; Fabiana Gullotta; Maurilio Ponzoni; Massimo Bernardi; Magda Marcatti; Aurore Saudemont; Claudio Bordignon; Barbara Savoldo; Fabio Ciceri; Luigi Naldini; Gianpietro Dotti; Chiara Bonini; Attilio Bondanza

Genetically targeted T cells promise to solve the feasibility and efficacy hurdles of adoptive T-cell therapy for cancer. Selecting a target expressed in multiple-tumor types and that is required for tumor growth would widen disease indications and prevent immune escape caused by the emergence of antigen-loss variants. The adhesive receptor CD44 is broadly expressed in hematologic and epithelial tumors, where it contributes to the cancer stem/initiating phenotype. In this study, silencing of its isoform variant 6 (CD44v6) prevented engraftment of human acute myeloid leukemia (AML) and multiple myeloma (MM) cells in immunocompromised mice. Accordingly, T cells targeted to CD44v6 by means of a chimeric antigen receptor containing a CD28 signaling domain mediated potent antitumor effects against primary AML and MM while sparing normal hematopoietic stem cells and CD44v6-expressing keratinocytes. Importantly, in vitro activation with CD3/CD28 beads and interleukin (IL)-7/IL-15 was required for antitumor efficacy in vivo. Finally, coexpressing a suicide gene enabled fast and efficient pharmacologic ablation of CD44v6-targeted T cells and complete rescue from hyperacute xenogeneic graft-versus-host disease modeling early and generalized toxicity. These results warrant the clinical investigation of suicidal CD44v6-targeted T cells in AML and MM.


Hepatology | 2011

Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk

Janka Matrai; Alessio Cantore; Cynthia C. Bartholomae; Andrea Annoni; Wei Wang; Abel Acosta-Sanchez; Ermira Samara-Kuko; Liesbeth De Waele; Ling Ma; Pietro Genovese; Martina Damo; Anne Arens; Kevin S. Goudy; Timothy C. Nichols; Christof von Kalle; Marinee Chuah; Maria Grazia Roncarolo; Manfred Schmidt; Thierry Vandendriessche; Luigi Naldini

Lentiviral vectors are attractive tools for liver‐directed gene therapy because of their capacity for stable gene expression and the lack of preexisting immunity in most human subjects. However, the use of integrating vectors may raise some concerns about the potential risk of insertional mutagenesis. Here we investigated liver gene transfer by integrase‐defective lentiviral vectors (IDLVs) containing an inactivating mutation in the integrase (D64V). Hepatocyte‐targeted expression using IDLVs resulted in the sustained and robust induction of immune tolerance to both intracellular and secreted proteins, despite the reduced transgene expression levels in comparison with their integrase‐competent vector counterparts. IDLV‐mediated and hepatocyte‐targeted coagulation factor IX (FIX) expression prevented the induction of neutralizing antibodies to FIX even after antigen rechallenge in hemophilia B mice and accounted for relatively prolonged therapeutic FIX expression levels. Upon the delivery of intracellular model antigens, hepatocyte‐targeted IDLVs induced transgene‐specific regulatory T cells that contributed to the observed immune tolerance. Deep sequencing of IDLV‐transduced livers showed only rare genomic integrations that had no preference for gene coding regions and occurred mostly by a mechanism inconsistent with residual integrase activity. Conclusion: IDLVs provide an attractive platform for the tolerogenic expression of intracellular or secreted proteins in the liver with a substantially reduced risk of insertional mutagenesis. (HEPATOLOGY 2011;)


Embo Molecular Medicine | 2014

Targeted gene therapy and cell reprogramming in Fanconi anemia

Paula Río; Rocío Baños; Angelo Lombardo; Oscar Quintana-Bustamante; Lara Álvarez; Zita Garate; Pietro Genovese; Elena Almarza; Antonio Valeri; Begoña Díez; Susana Navarro; Yaima Torres; Juan P. Trujillo; Rodolfo Murillas; José Segovia; Enrique Samper; Jordi Surrallés; Philip D. Gregory; Michael C. Holmes; Luigi Naldini; Juan A. Bueren

Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology‐directed DNA repair. In this study, we used zinc finger nucleases and integrase‐defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA‐A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene‐edited FA fibroblasts were then reprogrammed and re‐differentiated toward the hematopoietic lineage. Analyses of gene‐edited FA‐iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease‐free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene‐targeting and cell reprogramming strategies.


Science Translational Medicine | 2017

Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1

Giulia Schiroli; Samuele Ferrari; Anthony Conway; Aurelien Jacob; Valentina Capo; Luisa Albano; Tiziana Plati; Maria Carmina Castiello; Francesca Sanvito; Andrew R. Gennery; Chiara Bovolenta; Rahul Palchaudhuri; David T. Scadden; Michael C. Holmes; Anna Villa; Giovanni Sitia; Angelo Lombardo; Pietro Genovese; Luigi Naldini

Preclinical studies establish the conditions for safe and effective correction of SCID-X1 by targeted gene editing of hematopoietic stem cells. Gene correction, one step at a time Although gene therapy has been proposed for a variety of genetic disorders, including severe combined immunodeficiency, it has not yet found routine use in the clinic, in part because of potential complications. To help pave the way for safer translation of such gene therapy, Schiroli et al. studied potential approaches to it in mouse models of severe combined immunodeficiency. The authors systematically analyzed the outcomes of using different approaches to conditioning, different numbers of gene-edited cells, different techniques for editing the faulty gene, and other aspects of the technology to find the safest and most effective method. Targeted genome editing in hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematological diseases. However, the limited efficiency of homology-directed editing in primitive HSPCs constrains the yield of corrected cells and might affect the feasibility and safety of clinical translation. These concerns need to be addressed in stringent preclinical models and overcome by developing more efficient editing methods. We generated a humanized X-linked severe combined immunodeficiency (SCID-X1) mouse model and evaluated the efficacy and safety of hematopoietic reconstitution from limited input of functional HSPCs, establishing thresholds for full correction upon different types of conditioning. Unexpectedly, conditioning before HSPC infusion was required to protect the mice from lymphoma developing when transplanting small numbers of progenitors. We then designed a one-size-fits-all IL2RG (interleukin-2 receptor common γ-chain) gene correction strategy and, using the same reagents suitable for correction of human HSPC, validated the edited human gene in the disease model in vivo, providing evidence of targeted gene editing in mouse HSPCs and demonstrating the functionality of the IL2RG-edited lymphoid progeny. Finally, we optimized editing reagents and protocol for human HSPCs and attained the threshold of IL2RG editing in long-term repopulating cells predicted to safely rescue the disease, using clinically relevant HSPC sources and highly specific zinc finger nucleases or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9). Overall, our work establishes the rationale and guiding principles for clinical translation of SCID-X1 gene editing and provides a framework for developing gene correction for other diseases.


Human Gene Therapy | 2015

Cytokine-induced killer cells engineered with exogenous T-cell receptors directed against melanoma antigens: enhanced efficacy of effector cells endowed with a double mechanism of tumor recognition.

Angela Rita Elia; Paola Circosta; Dario Sangiolo; Chiara Bonini; Loretta Gammaitoni; Sara Mastaglio; Pietro Genovese; Massimo Geuna; Fabio Avolio; Giorgio Inghirami; Corrado Tarella; Alessandro Cignetti

Cytokine-induced killer (CIK) cells consist of a heterogeneous population of polyclonal T lymphocytes displaying NK phenotype and HLA-unrestricted cytotoxic activity against a broad range of tumors. We sought to determine whether transduction of CIK cells with T cell receptor (TCR) genes specific for tumor-associated antigens could generate effector cells endowed with a double mechanism of tumor recognition. HLA-A2-restricted TCR-transduced (TD) CIK directed against the melanoma antigens Mart1 and NY-ESO1 were generated by lentiviral transduction and successfully expanded over a 3-4-week period. TD-CIK cells were both CD3(+)/CD56(-) and CD3(+)/CD56(+) (31±8% and 59±9%, respectively), indicating that both major histocompatibility complex (MHC)-restricted T cells and MHC-unrestricted CIK could be targeted by lentiviral transduction. At the end of the culture, the majority of both unmodified and TD-CIK displayed an effector memory phenotype, without considerable expression of replicative senescence and exhaustion markers. Functionally, TD-CIK specifically recognized tumor cells expressing the relevant antigen as well as maintained their MHC-unrestricted tumor activity. The cytotoxic activity of TD-CIK against HLA-A2(+) melanoma cell lines was significantly higher than the untransduced counterparts at a low effector:target ratio (cytotoxic activity of TD-CIK was from 1.9- to 4.3-fold higher than untransduced counterparts). TD-CIK were highly proficient in releasing high amount of IFN-γ upon antigen-specific stimulation and were able to recognize primary melanoma targets. In conclusion, we showed that (1) the reproducibility and simplicity of CIK transduction and expansion might solve the problem of obtaining adequate numbers of potent antitumor effector cells for adoptive immunotherapy; (2) the presence of both terminal effectors as well as of less differentiated progenitors might confer them long survival in vivo; and (3) the addition of an MHC-restricted antigen recognition allows not only targeting tumor surface antigens but also a wider range of cytoplasmic or nuclear antigens, involved in tumor proliferation and survival. TD-CIK cells with a double mechanism of tumor recognition are an attractive and alternative tool for the development of efficient cell therapeutic strategies.


Embo Molecular Medicine | 2017

Therapeutic gene editing in CD34+ hematopoietic progenitors from Fanconi anemia patients

Begoña Díez; Pietro Genovese; Francisco Jose Roman-Rodriguez; Lara Álvarez; Giulia Schiroli; Laura Ugalde; Sandra Rodriguez‐Perales; Julián Sevilla; Cristina Díaz de Heredia; Michael C. Holmes; Angelo Lombardo; Luigi Naldini; Juan A. Bueren; Paula Río

Gene targeting constitutes a new step in the development of gene therapy for inherited diseases. Although previous studies have shown the feasibility of editing fibroblasts from Fanconi anemia (FA) patients, here we aimed at conducting therapeutic gene editing in clinically relevant cells, such as hematopoietic stem cells (HSCs). In our first experiments, we showed that zinc finger nuclease (ZFN)‐mediated insertion of a non‐therapeutic EGFP‐reporter donor in the AAVS1 “safe harbor” locus of FA‐A lymphoblastic cell lines (LCLs), indicating that FANCA is not essential for the editing of human cells. When the same approach was conducted with therapeutic FANCA donors, an efficient phenotypic correction of FA‐A LCLs was obtained. Using primary cord blood CD34+ cells from healthy donors, gene targeting was confirmed not only in in vitro cultured cells, but also in hematopoietic precursors responsible for the repopulation of primary and secondary immunodeficient mice. Moreover, when similar experiments were conducted with mobilized peripheral blood CD34+ cells from FA‐A patients, we could demonstrate for the first time that gene targeting in primary hematopoietic precursors from FA patients is feasible and compatible with the phenotypic correction of these clinically relevant cells.

Collaboration


Dive into the Pietro Genovese's collaboration.

Top Co-Authors

Avatar

Luigi Naldini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Angelo Lombardo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Bonini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Attilio Bondanza

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Elena Provasi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Fabio Ciceri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Zulma Magnani

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge