Pietro Mario Lugarà
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pietro Mario Lugarà.
Sensors | 2009
Angela Elia; Pietro Mario Lugarà; Cinzia Di Franco; Vincenzo Spagnolo
The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques.
Applied Optics | 2001
Antonio Ancona; Vincenzo Spagnolo; Pietro Mario Lugarà; Michele Ferrara
An optical sensor for real-time monitoring of laser welding based on a spectroscopic study of the optical emission of plasma plumes has been developed. The welding plasmas electron temperature was contemporarily monitored for three of the chemical species that constitute the plasma plume by use of related emission lines. The evolution of electron temperature was recorded and analyzed during several welding procedures carried out under various operating conditions. A clear correlation between the mean value and the standard deviation of the plasmas electron temperature and the quality of the welded joint has been found. We used this information to find optimal welding parameters and for real-time detection of weld defects such as crater formation, lack of penetration, weld disruptions, and seam oxidation.
Optics Express | 2014
Francesca Di Niso; Caterina Gaudiuso; Teresa Sibillano; Francesco P. Mezzapesa; Antonio Ancona; Pietro Mario Lugarà
We study the incubation effect during laser ablation of stainless steel with ultrashort pulses to boost the material removal efficiency at high repetition rates. The multi-shot ablation threshold fluence has been estimated for two pulse durations, 650-fs and 10-ps, in a range of repetition rates from 50 kHz to 1 MHz. Our results show that the threshold fluence decreases with the number of laser pulses N due to damage accumulation mechanisms, as expected. Moreover, approaching the MHz regime, the onset of heat accumulation enhances the incubation effect, which is in turn lower for shorter pulses at repetition rates below 600 kHz. A saturation of the threshold fluence value is shown to occur for a significantly high number of pulses, and well fitted by a modified incubation model.
Sensors | 2009
Teresa Sibillano; Antonio Ancona; Vincenzo Berardi; Pietro Mario Lugarà
In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market.
Optics Letters | 2005
Angela Elia; Pietro Mario Lugarà; Corrado Giancaspro
A photoacoustic trace-gas sensor for the measurement of nitric oxide with a detection limit of 500 parts in 10(9) has been demonstrated. The radiation source was a thermoelectrically cooled distributed-feedback quantum-cascade laser operating in pulsed mode near 5.3 microm with an average laser power of 8 mW. A resonant photoacoustic cell was excited in its first longitudinal mode by the modulated laser light. Preliminary measurements have been performed to test the performance of our photoacoustic sensor; possible improvements to reach lower detection limits are discussed.
Measurement Science and Technology | 2004
Antonio Ancona; Pietro Mario Lugarà; Fabio Ottonelli; Ida Maria Catalano
Non-intrusive and real-time monitoring techniques are increasingly required by manufacturing industry in order to detect flaws in arc welding processes. In this work the development of an optical inspection system, for monitoring the manual gas tungsten arc welding (GTAW) process of steel pipes, is described. The arc plasma visible emission produced during the process was acquired and spectroscopically analysed. Measuring the intensities of selected argon emission lines allowed real time calculation and recording of the axial electron temperature of the plasma. Experimental results showed that the temperature signal varies greatly in the case of instabilities of the weld pool that cause weld defects. A suitable algorithm, based on a statistical analysis of the signal, was developed in order to real time flag defective joints. It is shown that several weld defects such as porosity, dropout, lack of fusion, solid inclusions and craters were successfully detected in a production environment. The performances of the optical sensor were compared with the results of state-of-the-art post-weld controls such as x-rays and penetrating dyes, showing good agreement and thus demonstrating the validity of this quality monitoring system.
Optics Letters | 2011
Francesco P. Mezzapesa; Antonio Ancona; Teresa Sibillano; Francesco De Lucia; Maurizio Dabbicco; Pietro Mario Lugarà; Gaetano Scamarcio
We demonstrate that diode laser self-mixing interferometry can be exploited to instantaneously measure the ablation front displacement and the laser ablation rate during ultrafast microdrilling of metals. The proof of concept was obtained using a 50-μm-thick stainless steel plate as the target, a 120 ps/110 kHz microchip fiber laser as the machining source, and an 823 nm diode laser with an integrated photodiode as the probe. The time dependence of the hole penetration depth was measured with a 0.41 µm resolution.
Sensors | 2009
Angela Elia; Cinzia Di Franco; Vincenzo Spagnolo; Pietro Mario Lugarà; Gaetano Scamarcio
We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O) using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 μm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm−1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters.
High-power lasers and applications | 2000
Michele Ferrara; Antonio Ancona; Pietro Mario Lugarà; Michele Sibilano
An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.
Optics Express | 2011
Francesco P. Mezzapesa; Lorenzo Columbo; Massimo Brambilla; Maurizio Dabbicco; Antonio Ancona; Teresa Sibillano; Francesco De Lucia; Pietro Mario Lugarà; Gaetano Scamarcio
We demonstrate that a single all-optical sensor based on laser diode self-mixing interferometry can monitor the independent displacement of individual portions of a surface. The experimental evidence was achieved using a metallic sample in a translatory motion while partly ablated by a ps-pulsed fiber laser. A model based on the Lang-Kobayashi approach gives an excellent explanation of the experimental results.