Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pilar Cortés is active.

Publication


Featured researches published by Pilar Cortés.


Applied and Environmental Microbiology | 2010

Isolation and Characterization of Potentially Pathogenic Antimicrobial-Resistant Escherichia coli Strains from Chicken and Pig Farms in Spain

Pilar Cortés; Vanessa Blanc; Azucena Mora; Ghizlane Dahbi; Jesús E. Blanco; Miguel Blanco; Cecilia López; Antonia Andreu; Ferran Navarro; María del Pilar León-Castro Alonso; Germán Bou; Jorge Blanco; Montserrat Llagostera

ABSTRACT To ascertain whether on animal farms there reside extended-spectrum β-lactamase (ESBL) and plasmidic class C β-lactamase-producing Escherichia coli isolates potentially pathogenic for humans, phylogenetic analyses, pulsed-field gel electrophoresis (PFGE) typing, serotyping, and virulence genotyping were performed for 86 isolates from poultry (57 isolates) and pig (29 isolates) farms. E. coli isolates from poultry farms carried genes encoding enzymes of the CTX-M-9 group as well as CMY-2, whereas those from pig farms mainly carried genes encoding CTX-M-1 enzymes. Poultry and pig isolates differed significantly in their phylogenetic group assignments, with phylogroup A predominating in pig isolates and phylogroup D predominating in avian isolates. Among the 86 farm isolates, 23 (26.7%) carried two or more virulence genes typical of extraintestinal pathogenic E. coli (ExPEC). Of these, 20 were isolated from poultry farms and only 3 from pig farms. Ten of the 23 isolates belonged to the classic human ExPEC serotypes O2:H6, O2:HNM, O2:H7, O15:H1, and O25:H4. Despite the high diversity of serotypes and pulsotypes detected among the 86 farm isolates, 13 PFGE clusters were identified. Four of these clusters contained isolates with two or more virulence genes, and two clusters exhibited the classic human ExPEC serotypes O2:HNM (ST10) and O2:H6 (ST115). Although O2:HNM and O2:H6 isolates of human and animal origins differed with respect to their virulence genes and PFGE pulsotypes, the O2:HNM isolates from pigs showed the same sequence type (ST10) as those from humans. The single avian O15:H1 isolate was compared with human clinical isolates of this serotype. Although all were found to belong to phylogroup D and shared the same virulence gene profile, they differed in their sequence types (ST362-avian and ST393-human) and PFGE pulsotypes. Noteworthy was the detection, for the first time, in poultry farms of the clonal groups O25b:H4-ST131-B2, producing CTX-M-9, and O25a-ST648-D, producing CTX-M-32. The virulence genes and PFGE profiles of these two groups were very similar to those of clinical human isolates. While further studies are required to determine the true zoonotic potential of these clonal groups, our results emphasize the zoonotic risk posed especially by poultry farms, but also by pig farms, as reservoirs of ESBL- and CMY-2-encoding E. coli.


International Journal of Food Microbiology | 2013

Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

Denis A. Spricigo; Carlota Bardina; Pilar Cortés; Montserrat Llagostera

The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production.


PLOS ONE | 2012

Double Stranded Sperm DNA Breaks, Measured by Comet Assay, Are Associated with Unexplained Recurrent Miscarriage in Couples without a Female Factor

J. Ribas-Maynou; A. García-Peiró; Alba Fernandez-Encinas; María José Amengual; Elena Prada; Pilar Cortés; J. Navarro; J. Benet

It is known that sperm samples from recurrent pregnancy loss (RPL) couples have an increase in their sperm DNA fragmentation (SDF), but no studies have been performed in order to identify differences between single stranded SDF (ssSDF) and double stranded SDF (dsSDF) in these patients. This could be relevant because the type of DNA damage could have different effects. Semen samples were classified attending their clinical status: 25 fertile donors and 20 RPL patients with at least two unexplained first trimester miscarriages. SDF was analysed using alkaline and neutral Comet assay, SCD test and pulsed-field gel electrophoresis (PFGE), and ROC analysis including data from 105 more infertile patients (n = 150) was performed to establish predictive threshold values. SDF for alkaline and neutral Comet, and the SCD test was analysed in these categories of individuals. Data revealed the presence of two subgroups within fertile donors. The values obtained were 21.10±9.13, 23.35±10.45 and 12.31±4.31, respectively, for fertile donors with low values for both ssSDF and dsSDF; 27.86±12.64, 80.69±12.67 and 12.43±5.22, for fertile donors with low ssSDF and high dsSDF; and 33.61±15.50, 84.64±11.28 and 19.28±6.05, for unexplained RPL patients, also showing a low ssSDF and high dsSDF profile. This latter profile was seen in 85% of unexplained RPL and 33% of fertile donors, suggesting that it may be associated to a male risk factor for undergoing RPL. ROC analysis regarding recurrent miscarriage set the cut-off value at 77.50% of dsDNA SDF. PFGE for low ssSDF and high dsSDF profile samples and positive controls treated with DNase, to induce dsDNA breaks, showed a more intense band of about 48 kb, which fits the toroid model of DNA compaction in sperm, pointing out that some nuclease activity may be affecting their sperm DNA in RPL patients. This work identifies a very specific SDF profile related to the paternal risk of having RPL.


Applied and Environmental Microbiology | 2012

Significance of the Bacteriophage Treatment Schedule in Reducing Salmonella Colonization of Poultry

Carlota Bardina; Denis A. Spricigo; Pilar Cortés; Montserrat Llagostera

ABSTRACT Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time.


Infection and Immunity | 2008

Analysis of the Protective Capacity of Three Streptococcus suis Proteins Induced under Divalent-Cation-Limited Conditions

Jesús Aranda; Maria Elena Garrido; Pilar Cortés; Montserrat Llagostera; Jordi Barbé

ABSTRACT Streptococcus suis is a gram-positive pathogen that causes serious diseases in pigs and, in some cases, humans. Three genes of the virulent S. suis 89/1591 strain, encoding putative divalent-cation-binding lipoproteins, were isolated based on information obtained from the draft annotation files of this organisms genome. The products of these genes, which are inducible by divalent-cation deprivation, were subsequently purified, and their immunogenic and protective abilities were analyzed. All three proteins (SsuiDRAFT 0103, SsuiDRAFT 0174, and SsuiDRAFT 1237) were found to be immunogenic, but only one of them (SsuiDRAFT 0103) induced a significant protective response (87.5%, P = 0.01) against the same S. suis strain. Furthermore, the S. suis ssuiDRAFT 1240 gene (adcR), which encodes a predicted regulator of Zn2+ and/or Mn2+ uptake in streptococci, was cloned, and its protein product was purified. Electrophoretic mobility shift assays with purified S. suis AdcR protein showed experimentally, for the first time, that the AdcR DNA-binding sequence corresponds to the TTAACNRGTTAA motif. In addition, a requirement for either Zn2+ or Mn2+, but not Fe2+, to establish in vitro binding of AdcR to its target sequence and the ability of AdcR to bind the ssuiDRAFT 0103 and ssuiDRAFT 1237 gene promoters but not the promoter of the ssuiDRAFT 0174 gene were demonstrated. Taken together, these data suggest that SsuiDRAFT 0103 is a good candidate for vaccines against S. suis and support preliminary results indicating that bacterial envelope proteins involved in the uptake of divalent cations other than iron may be useful for protective purposes.


Molecular Microbiology | 2004

LexA‐independent DNA damage‐mediated induction of gene expression in Myxococcus xanthus

Susana Campoy; Marta Fontes; S. Padmanabhan; Pilar Cortés; Montserrat Llagostera; Jordi Barbé

Myxococcus xanthus, a member of the Proteobacteria delta‐class, has two independent recA genes, recA1 and recA2, but only recA2 is DNA damage‐inducible. The lexA gene has been isolated from M. xanthus by PCR amplification with oligonucleotides designed after sequence identification by tblastn analysis of its genome at the Cereon Microbial Sequence Database. The M. xanthus purified LexA protein is shown to bind specifically to the consensus sequence CTRHAMRYBYGTTCAGS present upstream of lexA and recA2. A degenerate copy of this motif but with important differences can be identified in the region upstream of the recA1 gene. A knock‐out lexA(Def) mutant that has been generated does not differ significantly from wild type in morphology, growth rate, light‐induced carotenogenesis or development. Using transcriptional lacZ fusions and quantitative RT‐PCR analysis, it has been demonstrated that expression of both lexA and recA2 genes is constitutive in the lexA(Def) mutant, whereas the transcription of the DNA damage non‐inducible recA1 gene is not affected in this strain. recN and ssb, whose expression in Escherichia coli are LexA‐regulated, are induced by DNA damage in the M. xanthus lexA(Def) mutant. These data reveal the existence of different regulatory mechanisms for DNA damage‐inducible genes in bacteria belonging to different phyla.


Applied and Environmental Microbiology | 2015

Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

Joan Colom; Mary Cano-Sarabia; Jennifer Otero; Pilar Cortés; Daniel Maspoch; Montserrat Llagostera

ABSTRACT Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals.


Veterinary Microbiology | 2010

The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis

Jesús Aranda; Maria Elena Garrido; Nahuel Fittipaldi; Pilar Cortés; Montserrat Llagostera; Marcelo Gottschalk; Jordi Barbé

In streptococci, the pleiotropic regulators AdcR and Fur control the transport of, zinc and iron, respectively, which are essential components of many proteins. In this work, DeltaadcR, Deltafur, and DeltaadcR Deltafur mutants of Streptococcus suis, a serious pathogen in pigs and humans, were assayed in a mouse model to determine their involvement in the virulence of this bacterium. The results showed, for the first time, that the virulence of S. suis mutants carrying an inactivation of adcR, fur, or both genes is significantly attenuated compared to the wild-type parent strain. Furthermore, all mutants were found to be more sensitive to oxidative stress. Our data provide evidence that the adcR and fur genes play important roles in the oxidative stress response of S. suis as well as in the full virulence of this bacterium.


Journal of Bacteriology | 2005

Expression of Canonical SOS Genes Is Not under LexA Repression in Bdellovibrio bacteriovorus

Susana Campoy; Noelia Salvador; Pilar Cortés; Ivan Erill; Jordi Barbé

The here-reported identification of the LexA-binding sequence of Bdellovibrio bacteriovorus, a bacterial predator belonging to the delta-Proteobacteria, has made possible a detailed study of its LexA regulatory network. Surprisingly, only the lexA gene and a multiple gene cassette including dinP and dnaE homologues are regulated by the LexA protein in this bacterium. In vivo expression analyses have confirmed that this gene cassette indeed forms a polycistronic unit that, like the lexA gene, is DNA damage inducible in B. bacteriovorus. Conversely, genes such as recA, uvrA, ruvCAB, and ssb, which constitute the canonical core of the Proteobacteria SOS system, are not repressed by the LexA protein in this organism, hinting at a persistent selective pressure to maintain both the lexA gene and its regulation on the reported multiple gene cassette. In turn, in vitro experiments show that the B. bacteriovorus LexA-binding sequence is not recognized by other delta-Proteobacteria LexA proteins but binds to the cyanobacterial LexA repressor. This places B. bacteriovorus LexA at the base of the delta-Proteobacteria LexA family, revealing a high degree of conservation in the LexA regulatory sequence prior to the diversification and specialization seen in deeper groups of the Proteobacteria phylum.


Microbiology | 2009

Protective capacities of cell surface-associated proteins of Streptococcus suis mutants deficient in divalent cation-uptake regulators.

Jesús Aranda; Maria Elena Garrido; Nahuel Fittipaldi; Pilar Cortés; Montserrat Llagostera; Marcelo Gottschalk; Jordi Barbé

Many cell surface-associated, divalent cation-regulated proteins are immunogenic, and some of them confer protection against the bacterial species from which they are derived. In this work, two Streptococcus suis divalent cation uptake regulator genes controlling zinc/manganese and iron uptake (adcR and fur, respectively) were inactivated in order to study the protective capacities of their cell surface-associated proteins. The results obtained showed overexpression of a set of immunogenic proteins (including members of the pneumococcal histidine triad family previously reported to confer protection against streptococcal pathogens) in S. suis adcR mutant cell surface extracts. Likewise, genes encoding zinc transporters, putative virulence factors and a ribosomal protein paralogue related to zinc starvation appeared to be derepressed in this mutant strain. Moreover, protection assays in mice showed that although neither adcR- nor fur-regulated cell surface-associated proteins were sufficient to confer protection in mice, the combination of both adcR- and fur-regulated cell surface-associated proteins is able to confer significant protection (50 %, P=0.038) against a challenge to mice vaccinated with them.

Collaboration


Dive into the Pilar Cortés's collaboration.

Top Co-Authors

Avatar

Montserrat Llagostera

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jordi Barbé

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jesús Aranda

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Susana Campoy

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Denis A. Spricigo

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Vanessa Blanc

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Carlota Bardina

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ferran Navarro

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Javier Retana

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jennifer Otero

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge