Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pilgun Oh is active.

Publication


Featured researches published by Pilgun Oh.


Angewandte Chemie | 2015

Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.

Wen Liu; Pilgun Oh; Xien Liu; Min-Joon Lee; Woongrae Cho; Sujong Chae; Youngsik Kim; Jaephil Cho

High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2 . However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.


Nano Letters | 2013

A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer

Yonghyun Cho; Pilgun Oh; Jaephil Cho

A solid solution series of lithium nickel metal oxides, Li[Ni(1-x)M(x)]O2 (with M = Co, Mn, and Al) have been investigated intensively to enhance the inherent structural instability of LiNiO2. However, when a voltage range of Ni-based cathode materials was increased up to >4.5 V, phase transitions occurring above 4.3 V resulted in accelerated formation of the trigonal phase (P3m1) and NiO phases, leading to and pulverization of the cathode during cycling at 60 °C. In an attempt to overcome these problems, LiNi0.62Co0.14Mn0.24O2 cathode material with pillar layers in which Ni(2+) ions were resided in Li slabs near the surface having a thickness of ∼10 nm was prepared using a polyvinylpyrrolidone (PVP) functionalized Mn precursor coating on Ni0.7Co0.15Mn0.15(OH)2. We confirmed the formation of a pillar layer via various analysis methods (XPS, HRTEM, and STEM). This material showed excellent structural stability due to a pillar layer, corresponding to 85% capacity retention between 3.0 and 4.5 V at 60 °C after 100 cycles. In addition, the amount of heat generation was decreased by 40%, compared to LiNi0.70Co0.15Mn0.15O2.


Advanced Materials | 2013

Critical Thickness of SiO2 Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li‐Ion Batteries

Soojin Sim; Pilgun Oh; Soo-Jin Park; Jaephil Cho

Amorphous SiO2 coating layers with thicknesses of ca. 2, 7, 10, and 15 nm are introduced into bulk@nanowire core@shell Si particles via direct thermal oxidation at 650-850 °C. Of the coated samples, Si with a coating thickness of ca. 7 nm has the best electrochemical performance. This sample shows an initial discharge capacity of 2279 mA h g(-1) with a Coulombic efficiency of 92% and displays 83% capacity retention after 50 cycles at 0.2C rate.


Nano Letters | 2014

High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries.

Min-Joon Lee; Sanghan Lee; Pilgun Oh; Youngsik Kim; Jaephil Cho

Tremendous research works have been done to develop better cathode materials for a large scale battery to be used for electric vehicles (EVs). Spinel LiMn2O4 has been considered as the most promising cathode among the many candidates due to its advantages of high thermal stability, low cost, abundance, and environmental affinity. However, it still suffers from the surface dissolution of manganese in the electrolyte at elevated temperature, especially above 60 °C, which leads to a severe capacity fading. To overcome this barrier, we here report an imaginative material design; a novel heterostructure LiMn2O4 with epitaxially grown layered (R3̅m) surface phase. No defect was observed at the interface between the host spinel and layered surface phase, which provides an efficient path for the ionic and electronic mobility. In addition, the layered surface phase protects the host spinel from being directly exposed to the highly active electrolyte at 60 °C. The unique characteristics of the heterostructure LiMn2O4 phase exhibited a discharge capacity of 123 mAh g(-1) and retained 85% of its initial capacity at the elevated temperature (60 °C) after 100 cycles.


ACS Nano | 2014

Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries.

Minseong Ko; Sujong Chae; Sookyung Jeong; Pilgun Oh; Jaephil Cho

Although various Si-based graphene nanocomposites provide enhanced electrochemical performance, these candidates still yield low initial coloumbic efficiency, electrical disconnection, and fracture due to huge volume changes after extended cycles lead to severe capacity fading and increase in internal impedance. Therefore, an innovative structure to solve these problems is needed. In this study, an amorphous (a) silicon nanoparticle backboned graphene nanocomposite (a-SBG) for high-power lithium ion battery anodes was prepared. The a-SBG provides ideal electrode structures-a uniform distribution of amorphous silicon nanoparticle islands (particle size <10 nm) on both sides of graphene sheets-which address the improved kinetics and cycling stability issues of the silicon anodes. a-Si in the composite shows elastic behavior during lithium alloying and dealloying: the pristine particle size is restored after cycling, and the electrode thickness decreases during the cycles as a result of self-compacting. This noble architecture facilitates superior electrochemical performance in Li ion cells, with a specific energy of 468 W h kg(-1) and 288 W h kg(-1) under a specific power of 7 kW kg(-1) and 11 kW kg(-1), respectively.


Nano Letters | 2014

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials

Pilgun Oh; Seungjun Myeong; Woongrae Cho; Min-Joon Lee; Minseong Ko; Hu Young Jeong; Jaephil Cho

Li-rich materials are considered the most promising for Li-ion battery cathodes, as high energy densities can be achieved. However, because an activation method is lacking for large particles, small particles must be used with large surface areas, a critical drawback that leads to poor long-term energy retention and low volumetric energy densities. Here we propose a new material engineering concept to overcome these difficulties. Our material is designed with 10 μm-sized secondary particles composed of submicron scaled flake-shaped primary particles that decrease the surface area without sacrificing rate capability. A novel activation method then overcomes the previous limits of Li-rich materials with large particles. As a result, we attained high average voltage and capacity retention in turn yielding excellent energy retention of 93% during 600 cycles. This novel and unique approach may furthermore open the door to new material engineering methods for high-performance cathode materials.


Journal of Materials Chemistry | 2013

Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials

Xiaodong Xu; Chandra Sekhar Rout; Jieun Yang; Ruiguo Cao; Pilgun Oh; Hyeon Suk Shin; Jaephil Cho

Few layered WS2–graphene nanosheet composites are prepared by a simple and scalable hydrothermal reaction and a subsequent freeze-drying method. The freeze-dried WS2–graphene composite exhibits good cycling stability and outstanding high-rate capability of lithium storage. The reversible capacity remains 647 mA h g−1 after 80 cycles at a current density of 0.35 A g−1. Comparable capacities of 541 and 296 mA h g−1 can still be maintained when cycling at even higher current densities of 7 and 14 A g−1 (7 and 14 mA cm−2) respectively.


Small | 2015

Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.

Minseong Ko; Pilgun Oh; Sujong Chae; Woongrae Cho; Jaephil Cho

In order to keep pace with increasing energy demands for advanced electronic devices and to achieve commercialization of electric vehicles and energy-storage systems, improvements in high-energy battery technologies are required. Among the various types of batteries, lithium ion batteries (LIBs) are among the most well-developed and commercialized of energy-storage systems. LIBs with Si anodes and Li-rich cathodes are one of the most promising alternative electrode materials for next-generation, high-energy batteries. Si and Li-rich materials exhibit high reversible capacities of <2000 mAh g(-1) and >240 mAh g(-1) , respectively. However, both materials have intrinsic drawbacks and practical limitations that prevent them from being utilized directly as active materials in high-energy LIBs. Examples for Li-rich materials include phase distortion during cycling and side reactions caused by the electrolyte at the surface, and for Si, large volume changes during cycling and low conductivity are observed. Recent progress and important approaches adopted for overcoming and alleviating these drawbacks are described in this article. A perspective on these matters is suggested and the requirements for each material are delineated, in addition to introducing a full-cell prototype utilizing a Li-rich cathode and Si anode.


Journal of Materials Chemistry | 2014

Lithium reaction mechanism and high rate capability of VS4–graphene nanocomposite as an anode material for lithium batteries

Xiaodong Xu; Sookyung Jeong; Chandra Sekhar Rout; Pilgun Oh; Minseong Ko; Hyejung Kim; Min Gyu Kim; Ruiguo Cao; Hyeon Suk Shin; Jaephil Cho

A graphene-attached VS4 composite prepared by a simple hydrothermal method is studied in terms of its lithium reaction mechanism and high rate capability. The nanocomposite exhibits a good cycling stability and an impressive high-rate capability for lithium storage, delivering a comparable capacity of 630 and 314 mA h g−1, even at high rates of 10 and 20 C (=10 and 20 A g−1, or 10 and 20 mA cm−2), respectively. In addition, full-cell (LiMn2O4/VS4–graphene) test results also exhibited a good capacity retention. The mechanism of Li storage is systematically studied and a conversion reaction with an irreversible phase change during the initial discharge–charge process is proposed.


Nature Communications | 2017

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

Wangda Li; Andrei Dolocan; Pilgun Oh; Hugo Celio; Suhyeon Park; Jaephil Cho; Arumugam Manthiram

Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.

Collaboration


Dive into the Pilgun Oh's collaboration.

Top Co-Authors

Avatar

Jaephil Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Minseong Ko

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Woongrae Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seungjun Myeong

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Youngsik Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Min-Joon Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wen Liu

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xien Liu

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sujong Chae

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Arumugam Manthiram

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge