Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minseong Ko is active.

Publication


Featured researches published by Minseong Ko.


ACS Nano | 2014

Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries.

Minseong Ko; Sujong Chae; Sookyung Jeong; Pilgun Oh; Jaephil Cho

Although various Si-based graphene nanocomposites provide enhanced electrochemical performance, these candidates still yield low initial coloumbic efficiency, electrical disconnection, and fracture due to huge volume changes after extended cycles lead to severe capacity fading and increase in internal impedance. Therefore, an innovative structure to solve these problems is needed. In this study, an amorphous (a) silicon nanoparticle backboned graphene nanocomposite (a-SBG) for high-power lithium ion battery anodes was prepared. The a-SBG provides ideal electrode structures-a uniform distribution of amorphous silicon nanoparticle islands (particle size <10 nm) on both sides of graphene sheets-which address the improved kinetics and cycling stability issues of the silicon anodes. a-Si in the composite shows elastic behavior during lithium alloying and dealloying: the pristine particle size is restored after cycling, and the electrode thickness decreases during the cycles as a result of self-compacting. This noble architecture facilitates superior electrochemical performance in Li ion cells, with a specific energy of 468 W h kg(-1) and 288 W h kg(-1) under a specific power of 7 kW kg(-1) and 11 kW kg(-1), respectively.


Nano Letters | 2014

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials

Pilgun Oh; Seungjun Myeong; Woongrae Cho; Min-Joon Lee; Minseong Ko; Hu Young Jeong; Jaephil Cho

Li-rich materials are considered the most promising for Li-ion battery cathodes, as high energy densities can be achieved. However, because an activation method is lacking for large particles, small particles must be used with large surface areas, a critical drawback that leads to poor long-term energy retention and low volumetric energy densities. Here we propose a new material engineering concept to overcome these difficulties. Our material is designed with 10 μm-sized secondary particles composed of submicron scaled flake-shaped primary particles that decrease the surface area without sacrificing rate capability. A novel activation method then overcomes the previous limits of Li-rich materials with large particles. As a result, we attained high average voltage and capacity retention in turn yielding excellent energy retention of 93% during 600 cycles. This novel and unique approach may furthermore open the door to new material engineering methods for high-performance cathode materials.


Nano Letters | 2013

Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion Batteries

Sookyung Jeong; Jung-Pil Lee; Minseong Ko; Guntae Kim; Soo-Jin Park; Jaephil Cho

A novel architecture consisting of Si nanowires internally grown from porous graphite is synthesized by etching of graphite with a lamellar structure via a VLS (vapor-liquid-solid) process. This strategy gives the high electrode density of 1.5 g/cm(3), which is comparable with practical anode of the Li-ion battery. Our product demonstrates a high volumetric capacity density of 1363 mAh/cm(3) with 91% Coulombic efficiency and high rate capability of 568 mAh/cm(3) even at a 5C rate. This good electrochemical performance allows porous graphite to offer free space to accommodate the volume change of Si nanowires during cycling and the electron transport to efficiently be improved between active materials.


Nano Letters | 2014

Flexible high-energy Li-ion batteries with fast-charging capability

Mi-Hee Park; Mijung Noh; Sanghan Lee; Minseong Ko; Sujong Chae; Soojin Sim; Sinho Choi; Hyejung Kim; Haisol Nam; Soo-Jin Park; Jaephil Cho

With the development of flexible mobile devices, flexible Li-ion batteries have naturally received much attention. Previously, all reported flexible components have had shortcomings related to power and energy performance. In this research, in order to overcome these problems while maintaining the flexibility, honeycomb-patterned Cu and Al materials were used as current collectors to achieve maximum adhesion in the electrodes. In addition, to increase the energy and power multishelled LiNi0.75Co0.11Mn0.14O2 particles consisting of nanoscale V2O5 and LixV2O5 coating layers and a LiδNi0.75-zCo0.11Mn0.14VzO2 doping layer were used as the cathode-anode composite (denoted as PNG-AES) consisting of amorphous Si nanoparticles (<20 nm) loaded on expanded graphite (10 wt %) and natural graphite (85 wt %). Li-ion cells with these three elements (cathode, anode, and current collector) exhibited excellent power and energy performance along with stable cycling stability up to 200 cycles in an in situ bending test.


ChemElectroChem | 2015

Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries

Minseong Ko; Sujong Chae; Jaephil Cho

Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems.


Energy and Environmental Science | 2016

Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries

Sujong Chae; Minseong Ko; Seungkyu Park; Namhyung Kim; Jiyoung Ma; Jaephil Cho

Nano-engineering of silicon anodes has contributed to the demonstration of a promising potential for high energy lithium ion batteries, through addressing the degradation of battery performance derived from severe volume changes during cycling. However, the practical use of nano-engineered silicon anodes is still stuck because of remaining challenges, such as the low tap density, poor scalability and inferior electrical properties. Herein, we successfully developed a new Fe–Cu–Si ternary composite (FeCuSi) by scalable spray drying and facile heat treatment. As a result, FeCuSi exhibited remarkable initial Coulombic efficiency (91%) and specific capacity (1287 mA h g−1). In order to exactly characterize the electrical properties of FeCuSi and directly compare them with industrially developed benchmarking samples such as silicon monoxide (SiO) and a silicon-metal alloy (Si2Fe), both half-cell and full-cell tests were performed with high electrode density (1.6 g cc−1) and high areal capacity (3.4 mA h cm−2). Overall, FeCuSi outperformed the benchmarking samples in terms of discharge capacity and capacity retention in high mass loading for 300 cycles.


Small | 2015

Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.

Minseong Ko; Pilgun Oh; Sujong Chae; Woongrae Cho; Jaephil Cho

In order to keep pace with increasing energy demands for advanced electronic devices and to achieve commercialization of electric vehicles and energy-storage systems, improvements in high-energy battery technologies are required. Among the various types of batteries, lithium ion batteries (LIBs) are among the most well-developed and commercialized of energy-storage systems. LIBs with Si anodes and Li-rich cathodes are one of the most promising alternative electrode materials for next-generation, high-energy batteries. Si and Li-rich materials exhibit high reversible capacities of <2000 mAh g(-1) and >240 mAh g(-1) , respectively. However, both materials have intrinsic drawbacks and practical limitations that prevent them from being utilized directly as active materials in high-energy LIBs. Examples for Li-rich materials include phase distortion during cycling and side reactions caused by the electrolyte at the surface, and for Si, large volume changes during cycling and low conductivity are observed. Recent progress and important approaches adopted for overcoming and alleviating these drawbacks are described in this article. A perspective on these matters is suggested and the requirements for each material are delineated, in addition to introducing a full-cell prototype utilizing a Li-rich cathode and Si anode.


Journal of Materials Chemistry | 2014

Lithium reaction mechanism and high rate capability of VS4–graphene nanocomposite as an anode material for lithium batteries

Xiaodong Xu; Sookyung Jeong; Chandra Sekhar Rout; Pilgun Oh; Minseong Ko; Hyejung Kim; Min Gyu Kim; Ruiguo Cao; Hyeon Suk Shin; Jaephil Cho

A graphene-attached VS4 composite prepared by a simple hydrothermal method is studied in terms of its lithium reaction mechanism and high rate capability. The nanocomposite exhibits a good cycling stability and an impressive high-rate capability for lithium storage, delivering a comparable capacity of 630 and 314 mA h g−1, even at high rates of 10 and 20 C (=10 and 20 A g−1, or 10 and 20 mA cm−2), respectively. In addition, full-cell (LiMn2O4/VS4–graphene) test results also exhibited a good capacity retention. The mechanism of Li storage is systematically studied and a conversion reaction with an irreversible phase change during the initial discharge–charge process is proposed.


Nano Letters | 2015

Hollow Silicon Nanostructures via the Kirkendall Effect.

Yoonkook Son; Yeonguk Son; Min Choi; Minseong Ko; Sujong Chae; Noejung Park; Jaephil Cho

The Kirkendall effect is a simple, novel phenomenon that may be applied for the synthesis of hollow nanostructures with designed pore structures and chemical composition. We demonstrate the use of the Kirkendall effect for silicon (Si) and germanium (Ge) nanowires (NWs) and nanoparticles (NPs) via introduction of nanoscale surface layers of SiO2 and GeO2, respectively. Depending on the reaction time, Si and Ge atoms gradually diffuse outward through the oxide layers, with pore formation in the nanostructural cores. Through the Kirkendall effect, NWs and NPs were transformed into nanotubes (NTs) and hollow NPs, respectively. The mechanism of the Kirkendall effect was studied via quantum molecular dynamics calculations. The hollow products demonstrated better electrochemical performance than their solid counterparts because the pores developed in the nanostructures resulted in lower external pressures during lithiation.


Nature Communications | 2017

Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes

Namhyung Kim; Sujong Chae; Jiyoung Ma; Minseong Ko; Jaephil Cho

As fast-charging lithium-ion batteries turn into increasingly important components in forthcoming applications, various strategies have been devoted to the development of high-rate anodes. However, despite vigorous efforts, the low initial Coulombic efficiency and poor volumetric energy density with insufficient electrode conditions remain critical challenges that have to be addressed. Herein, we demonstrate a hybrid anode via incorporation of a uniformly implanted amorphous silicon nanolayer and edge-site-activated graphite. This architecture succeeds in improving lithium ion transport and minimizing initial capacity losses even with increase in energy density. As a result, the hybrid anode exhibits an exceptional initial Coulombic efficiency (93.8%) and predominant fast-charging behavior with industrial electrode conditions. As a result, a full-cell demonstrates a higher energy density (≥1060 Wh l−1) without any trace of lithium plating at a harsh charging current density (10.2 mA cm−2) and 1.5 times faster charging than that of conventional graphite.It is desirable to develop fast-charging batteries retaining high energy density. Here, the authors report a hybrid anode via incorporation of an implanted amorphous silicon nanolayer and edge-plane-activated graphite, which meets both criteria.

Collaboration


Dive into the Minseong Ko's collaboration.

Top Co-Authors

Avatar

Jaephil Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sujong Chae

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Pilgun Oh

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jiyoung Ma

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Namhyung Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seungjun Myeong

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sookyung Jeong

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyejung Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Min Choi

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge