Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pin-I Huang is active.

Publication


Featured researches published by Pin-I Huang.


Biochemical and Biophysical Research Communications | 2009

Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer

Yu-Chih Chen; Yi-Wei Chen; Han-Shui Hsu; Ling-Ming Tseng; Pin-I Huang; Kai-Hsi Lu; Dow-Tien Chen; Lung-Kuo Tai; Ming-Chi Yung; Shih-Ching Chang; Hung-Hai Ku; Shih-Hwa Chiou; Wen-Liang Lo

Aldehyde dehydrogenase 1 (ALDH1) has been considered to be a marker for cancer stem cells. However, the role of ALDH1 in head and neck squamous cell carcinoma (HNSCC) has yet to be determined. In this study, we isolated ALDH1-positive cells from HNSCC patients and showed that these HNSCC-ALDH1+ cells displayed radioresistance and represented a reservoir for generating tumors. Based on microarray findings, the results of Western blotting and immunofluorescent assays further confirmed that ALDH1+-lineage cells showed evidence of having epithelial-mesenchymal transition (EMT) shifting and endogenously co-expressed Snail. Furthermore, the knockdown of Snail expression significantly decreased the expression of ALDH1, inhibited cancer stem-like properties, and blocked the tumorigenic abilities of CD44+CD24(-)ALDH1+ cells. Finally, in a xenotransplanted tumorigenicity study, we confirmed that the treatment effect of chemoradiotherapy for ALDH1+ could be improved by Snail siRNA. In summary, it is likely that ALDH1 is a specific marker for the cancer stem-like cells of HNSCC.


The Journal of Pathology | 2011

MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells†

Wen-Liang Lo; Cheng-Chia Yu; Guang-Yuh Chiou; Yi-Wei Chen; Pin-I Huang; Chian-Shiu Chien; Ling-Ming Tseng; Pen-Yuan Chu; Kai-Hsi Lu; Kuo-Wei Chang; Shou-Yen Kao; Shih-Hwa Chiou

MicroRNA‐200c (miR200c) is emerging as an important regulator of tumourigenicity and cancer metastasis with a strong capacity for inducing epithelial–mesenchymal transitions. However, the role of miR200c in head and neck squamous cell carcinoma (HNSCC) and HNSCC‐associated cancer stem cells (HNSCC‐CSCs) is unknown. In this study, the expression of miR200c in the regional metastatic lymph node of HNSCC tissues was significantly decreased, but BMI1 expression was increased as compared to parental tumours. Importantly, site‐directed mutagenesis with a luciferase reporter assay showed that miR200c targeted the 3′ UTR of BMI1 in HNSCC cells. Isolated HNSCC‐derived ALDH1+/CD44+ cells displayed CSC‐like tumour initiating and radio‐resistant properties. The expression levels of miR200c were significantly down‐regulated while BMI1 was increased in HNSCC‐ALDH1+/CD44+ compared to the other subsets of HNSCC cells. Furthermore, increased miR200c expression or knockdown of BMI1 could significantly inhibit the malignant CSC‐like properties of ALDH1+/CD44+ cells. miR200c over‐expression further down‐regulated the expressions of ZEB1, Snail and N‐cadherin, but up‐regulated E‐cadherin expression in ALDH1+/CD44+ cells. Finally, a xenotransplantion study confirmed that over‐expression of miR200c or BMI1 knockdown effectively inhibited the lung metastatic ability and prolonged the survival rate of ALDH1+/CD44+‐transplanted mice. In summary, miR200c negatively modulates the expression of BMI1 but also significantly inhibits the metastatic capability of epithelial–mesenchymal transitions in malignant HNSCC by reducing the expression of BMI1/ZEB1. Restoration of miR200c in HNSCC and CSCs may be a promising therapeutic approach. Copyright


Molecular Cancer Therapeutics | 2010

Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma--derived CD44(+)ALDH1(+) cells.

Yi-Wei Chen; Kuan-Hsuan Chen; Pin-I Huang; Yu-Chih Chen; Guang-Yu Chiou; Wen-Liang Lo; Ling-Ming Tseng; Han-Sui Hsu; Kuo-Wei Chang; Shih-Hwa Chiou

Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer worldwide. Signal transducers and activators of transcription 3 (STAT3) signaling is reported to promote tumor malignancy and recurrence in HNSCC. Cucurbitacins, triterpenoid derivatives, are strong STAT3 inhibitors with anticancer properties. Recent studies have shown aldehyde dehydrogenase 1 (ALDH1) to be a marker of cancer stem cells (CSC) in HNSCC. The aim of this study was to investigate the therapeutic effect of cucurbitacin I in HNSCC-derived CSCs. Using immunohistochemical analysis, we firstly showed that CD44, ALDH1, and phosphorylated STAT3 (p-STAT3) were higher in high-grade HNSCCs, and that triple positivity for CD44/ALDH1/p-STAT3 indicated a worse prognosis for HNSCC patients. Secondly, CD44+ALDH1+ cells isolated from seven HNSCC patients showed greater tumorigenicity, radioresistance, and high expression of stemness (Bmi-1/Oct-4/Nanog) and epithelial-mesenchymal-transitional (Snail/Twist) genes as p-STAT3 level increased. Furthermore, we found that cucurbitacin I (JSI-124) can effectively inhibit the expression of p-STAT3 and capacities for tumorigenicity, sphere formation, and radioresistance in HNSCC-CD44+ALDH1+. Notably, 150 nmol/L cucurbitacin I effectively blocked STAT3 signaling and downstream survivin and Bcl-2 expression, and it induced apoptosis in HNSCC-CD44+ALDH1+. Moreover, microarray data indicated that 100 nmol/L cucurbitacin I facilitated CD44+ALDH1+ cells to differentiate into CD44−ALDH1− and enhanced the radiosensitivity of HNSCC-CD44+ALDH1+. Xenotransplant experiments revealed that cucurbitacin I combined with radiotherapy significantly suppressed tumorigenesis and lung metastasis and further improved the survival rate in HNSCC-CD44+ALDH1+-transplanted immunocompromised mice. Taken together, our data show that cucurbitacin I, STAT3 inhibitor, reduces radioresistant, distant-metastatic, and CSC-like properties of HNSCC-CD44+ALDH1+ cells. The potential of cucurbitacin I as a radiosensitizer should be verified in future anti-CSC therapy. Mol Cancer Ther; 9(11); 2879–92. ©2010 AACR.


Journal of Oncology | 2011

Bmi-1 Regulates Snail Expression and Promotes Metastasis Ability in Head and Neck Squamous Cancer-Derived ALDH1 Positive Cells

Cheng-Chia Yu; Wen-Liang Lo; Yi-Wei Chen; Pin-I Huang; Han-Shui Hsu; Ling-Ming Tseng; Shih-Chieh Hung; Shou-Yen Kao; Charn-Jung Chang; Shih-Hwa Chiou

Recent studies suggest that ALDH1 is a putative marker for HNSCC-derived cancer stem cells. However, the regulation mechanisms that maintain the stemness and metastatic capability of HNSCC-ALDH1+ cells remain unclear. Initially, HNSCC-ALDH1+ cells from HNSCC patient showed cancer stemness properties, and high expression of Bmi1 and Snail. Functionally, tumorigenic properties of HNSCC-ALDH1+ cells could be downregulated by knockdown of Bmi-1. Overexpression of Bmi-1 altered in expression property ALDH1− cells to that of ALDH1+ cells. Furthermore, knockdown of Bmi-1 enhanced the radiosensitivity of radiation-treated HNSCC-ALDH1+ cells. Moreover, overexpression of Bmi-1 in HNSCC-ALDH1− cells increased tumor volume and number of pulmonary metastatic lesions by xenotransplant assay. Importantly, knock-down of Bmi1 in HNSCC-ALDH1+ cells significantly decreased distant metastases in the lungs. Clinically, coexpression of Bmi-1/Snail/ALDH1 predicted the worst prognosis in HNSCC patients. Collectively, our data suggested that Bmi-1 plays a key role in regulating Snail expression and cancer stemness properties of HNSCC-ALDH1+ cells.


Journal of Neurosurgery | 2011

Celecoxib and radioresistant glioblastoma-derived CD133+ cells: improvement in radiotherapeutic effects. Laboratory investigation.

Hsin-I Ma; Shih-Hwa Chiou; Dueng-Yuan Hueng; Lung-Kuo Tai; Pin-I Huang; Chung-Lan Kao; Yi-Wei Chen; Huey-Kang Sytwu

OBJECT Glioblastoma, the most common primary brain tumor, has a poor prognosis, even with aggressive resection and chemoradiotherapy. Recent studies indicate that CD133(+) cells play a key role in radioresistance and recurrence of glioblastoma. Cyclooxygenase-2 (COX-2), which converts arachidonic acid to prostaglandins, is over-expressed in a variety of tumors, including CD133(+) glioblastomas. The COX-2-derived prostaglandins promote neovascularization during tumor development, and conventional radiotherapy increases the proportion of CD133(+) cells rather than eradicating them. The aim of the present study was to investigate the role of celecoxib, a selective COX-2 inhibitor, in enhancing the therapeutic effects of radiation on CD133(+) glioblastomas. METHODS Cells positive for CD133 were isolated from glioblastoma specimens and characterized by flow cytometry, then treated with celecoxib and/or ionizing radiation (IR). Clonogenic assay, cell irradiation, cell cycle analysis, Western blot, and xenotransplantation were used to assess the effects of celecoxib alone, IR alone, and IR with celecoxib on CD133(+) and CD133(-) glioblastoma cells. Three separate xenotransplantation experiments were carried out using 310 severe combined immunodeficient (SCID) mice: 1) an initial tumorigenicity evaluation in which 3 different quantities of untreated CD133(-) cells or untreated or pretreated CD133(+) cells (5 treatment conditions) from 7 different tumors were injected into the striatum of 2 mice (210 mice total); 2) a tumor growth study (50 mice); and 3) a survival study (50 mice). For these last 2 studies the same 5 categories of cells were used as in the tumorigenicity (untreated CD133(-) cells, untreated or pretreated CD133(+) cells, with pretreatment consisting of celecoxib alone, IR alone, or IR and celecoxib), but only 1 cell source (Case 2) and quantity (5 × 10(4) cells) were used. RESULTS High levels of COX-2 protein were detected in the CD133(+) but not the CD133(-) glioblastoma cells. The authors further demonstrated that 30 μM celecoxib was able to effectively enhance the IR effect in inhibiting colony formation and increasing IR-mediated apoptosis in celecoxib-treated CD133(+) glioblastoma cells. Furthermore, reduction in radioresistance was correlated with the induction of G2/M arrest, which was partially mediated through the increase in the level of phosphorylated-cdc2. In vivo xenotransplant analysis further confirmed that CD133(+)-associated tumorigenicity was significantly suppressed by celecoxib treatment. Importantly, pretreatment of CD133(+) glioblastoma cells with a combination of celecoxib and IR before injection into the striatum of SCID mice resulted in a statistically significant reduction in tumor growth and a statistically significant increase in the mean survival rate of the mice. CONCLUSIONS Celecoxib combined with radiation plays a critical role in the suppression of growth of CD133(+) glioblastoma stemlike cells. Celecoxib is therefore a radiosensitizing drug for clinical application in glioblastoma.


Journal of Pharmacology and Experimental Therapeutics | 2012

Targeting Signal Transducer and Activator of Transcription 3 Pathway by Cucurbitacin I Diminishes Self-Renewing and Radiochemoresistant Abilities in Thyroid Cancer-Derived CD133+ Cells

Ling-Ming Tseng; Pin-I Huang; Yu-Rung Chen; Yu-Chih Chen; Yueh-Ching Chou; Yi-Wei Chen; Yuh-Lih Chang; Han-Shui Hsu; Yuan-Tzu Lan; Kuan-Hsuan Chen; Chin-Wen Chi; Shih-Hwa Chiou; De-Ming Yang; Chen-Hsen Lee

Anaplastic thyroid cancer (ATC) is a lethal solid tumor with poor prognosis because of its invasiveness and its resistance to current therapies. Recently, ATC-CD133+ cells were found to have cancer stem cell (CSC) properties and were suggested to be important contributors to tumorigenicity and cancer metastasis. However, the molecular pathways and therapeutic targets in thyroid cancer-related CSCs remain undetermined. In this study, ATC-CD133+ cells were isolated and found to have increased tumorigenicity, radioresistance, and higher expression of both embryonic stem cell-related and drug resistance-related genes compared with ATC-CD133− cells. Microarray bioinformatics analysis suggested that the signal transducer and activator of transcription 3 (STAT3) pathway could be important in regulating the stemness signature in ATC-CD133+ cells; therefore, the effect of the potent STAT3 inhibitor cucurbitacin I in ATC-CD133+ cells was evaluated in this study. Treatment of ATC-CD133+ cells with cucurbitacin I diminished their CSC-like abilities, inhibited their stemness gene signature, and facilitated their differentiation into ATC-CD133− cells. Of note, treatment of ATC-CD133+ cells with cucurbitacin I up-regulated the expression of thyroid-specific genes and significantly enhanced radioiodine uptake. Furthermore, cucurbitacin I treatment increased the sensitivity of ATC-CD133+ cells to radiation and chemotherapeutic drugs through apoptosis. Finally, xenotransplantation experiments revealed that cucurbitacin I plus radiochemotherapy significantly suppressed tumorigenesis and improved survival in immunocompromised mice into which ATC-CD133+ cells were transplanted. In summary, these results show that the STAT3 pathway plays a key role in mediating CSC properties in ATC-CD133+ cells. Targeting STAT3 with cucurbitacin I in ATC may provide a new approach for therapeutic treatment in the future.


Cancer | 2012

Change in treatment strategy for intracranial germinoma: Long-term follow-up experience at a single institute

Yi-Wei Chen; Pin-I Huang; Donald Ming-Tak Ho; Yu-Wen Hu; Kai-Ping Chang; Shih-Hwa Chiou; Wan-Yuo Guo; Feng-Chi Chang; Muh-Lii Liang; Yi-Yen Lee; Hsin-Hung Chen; Ting-Rong Hsu; Shih-Chieh Lin; Tai-Tong Wong; Sang-Hue Yen

Previous intracranial germinoma (IG) studies have investigated the effect of different radiotherapy (RT) volumes and the necessity for adjunctive chemotherapy, but there is currently no consensus on the best treatment for this tumor.


Biochemical and Biophysical Research Communications | 2011

Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells

Charn-Jung Chang; Yueh Chien; Kai-Hsi Lu; Shih-Ching Chang; Yueh-Ching Chou; Chi-Shuan Huang; Chin-Hong Chang; Kuan-Hsuan Chen; Yuh-Lih Chang; Ling-Ming Tseng; Wen-Shin Song; Jhi-Joung Wang; Jen-Kou Lin; Pin-I Huang; Yuan-Tzu Lan

Oct4, a member of the POU-domain transcription factor family, has been implicated in the cancer stem cell (CSC)-like properties of various cancers. However, the precise role of Oct4 in colorectal CSC initiation remains uncertain. Numerous studies have demonstrated a strong link between inflammation and tumorigenesis in colorectal cancers. In this study, we demonstrated that Oct4 overexpression enhances CSC-like properties of colorectal cancer cells (CRCs), including sphere formation, cell colony formation, cell migration, invasiveness, and drug resistance. In addition, putative CSC markers, stemness genes, drug-resistant genes, as well as interleukin (IL)-8 and IL-32 were upregulated. Microarray-based bioinformatics of CRCs showed higher expression levels of embryonic stem cell-specific genes in cells that overexpressed Oct4. Neutralization of either IL-8 or IL-32 with specific antibodies partially blocked the tumorigenic effects induced by either Oct4 overexpression or by the addition of conditioned media from Oct4-overexpressing CRCs. In addition, the presence of Oct4-overexpressing CRCs enhanced the tumorigenic potential of parental CRCs in vivo. In summary, these data suggest that IL-8 and IL-32 play a role in regulating the CSC-like properties that promote tumorigenesis of CRCs in both autocrine and paracrine manners.


International Journal of Radiation Oncology Biology Physics | 2010

Optimal Treatment for Intracranial Germinoma: Can We Lower Radiation Dose Without Chemotherapy?

Sang-Hue Yen; Yi-Wei Chen; Pin-I Huang; Tai-Tong Wong; Donald Ming-Tak Ho; Kai-Ping Chang; Muh-Lii Liang; Shih-Hwa Chiou; Yi-Yen Lee; Hsin-Hung Chen

PURPOSE To review the effectiveness of reduced-dose and restricted-volume radiation-only therapy in the treatment of intracranial germinoma and to assess the feasibility of reducing or eliminating the use of chemotherapy. METHODS AND MATERIALS Between January 1996 and March 2007, a retrospective analysis was performed that included 38 patients who received either reduced radiation alone (30 Gy for 26 patients) or reduced radiation with chemotherapy (n = 12 patients). All 38 patients received extended focal (including whole-ventricle) irradiation and were followed up until February 2008. Overall survival (OS) and relapse-free survival (RFS) rates were calculated. Variables associated with survival were evaluated by univariate Cox proportional hazards regression. RESULTS Median follow-up was 62.4 months (range, 10.1-142.5 months). The total 5-year OS rate was 93.7%. The 5-year OS and RFS rates for patients receiving radiation only were 100% and 96.2%, respectively. The rates for those receiving radiation plus chemotherapy were 83.3 % and 91.7%, respectively (not statistically significant). No predictive factor was significantly associated with the OS or RFS rate. Chemotherapy had no significant effect on survival but was associated with a higher incidence of treatment-related toxicity. CONCLUSIONS A further decrease in the radiation dose to 30 Gy with whole-ventricle irradiation is sufficient to treat selected patients with intracranial germinoma. Wide-field irradiation or chemotherapy should be avoided as these methods are unnecessary. Thus, reduction of the radiation dose to 30 Gy may be feasible, even without chemotherapy.


Acta Biomaterialia | 2015

Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model.

Yueh Chien; Yuh-Lih Chang; Hsin-Yang Li; Mikael Larsson; Wai-Wah Wu; Chian-Shiu Chien; Chien-Ying Wang; Pen-Yuan Chu; Kuan-Hsuan Chen; Wen-Liang Lo; Shih-Hwa Chiou; Yuan-Tzu Lan; Teh-Ia Huo; Shou-Dong Lee; Pin-I Huang

MicroRNA122 (miR122), a liver-specific microRNA, plays critical roles in homeostatic regulation and hepatic-specific differentiation. Induced pluripotent stem cells (iPSCs) have promising potential in regenerative medicine, but it remains unknown whether non-viral vector-mediated miR122 delivery can enhance the differentiation of iPSCs into hepatocyte-like cells (iPSC-Heps) and rescue thioacetamide-induced acute hepatic failure (AHF) in vivo. In this study, we demonstrated that embedment of miR122 complexed with polyurethane-graft-short-branch polyethylenimine copolymer (PU-PEI) in nanostructured amphiphatic carboxymethyl-hexanoyl chitosan (CHC) led to dramatically enhanced miR122 delivery into human dental pulp-derived iPSCs (DP-iPSCs) and facilitated these DP-iPSCs to differentiate into iPSC-Heps (miR122-iPSC-Heps) with mature hepatocyte functions. Microarray and bioinformatics analysis further indicated that CHC/PU-PEI-miR122 promoted the gene-signature pattern of DP-iPSCs to shift into a liver-specific pattern. Furthermore, intrahepatic delivery of miR122-iPSC-Heps, but not miR-Scr-iPSC-Heps, improved liver functions and rescued recipient survival, and CHC-mediated delivery showed a better efficacy than that using phosphate buffered saline as a delivery vehicle. In addition, these transplanted miR122-iPSC-Heps remained viable and could produce circulatory albumin for 4 months. Taken together, our findings demonstrate that non-viral delivery of miR122 shortens the time of iPSC differentiation into hepatocytes and the delivery of miR122-iPSC-Heps using CHC as a vehicle exhibited promising hepatoprotective efficacy in vivo. miR122-iPSC-Heps may represent a feasible cell source and provide an efficient and alternative strategy for hepatic regeneration in AHF.

Collaboration


Dive into the Pin-I Huang's collaboration.

Top Co-Authors

Avatar

Yi-Wei Chen

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Shih-Hwa Chiou

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yi-Yen Lee

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Sang-Hue Yen

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Wen-Liang Lo

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Tai-Tong Wong

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Kai-Ping Chang

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Ling-Ming Tseng

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuh-Lih Chang

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Ming-Teh Chen

Taipei Veterans General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge