Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuh-Lih Chang is active.

Publication


Featured researches published by Yuh-Lih Chang.


PLOS ONE | 2008

Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells

Yu-Chih Chen; Han-Shui Hsu; Yi-Wei Chen; Tung-Hu Tsai; Chorng-Kuang How; Chien-Ying Wang; Shih-Chieh Hung; Yuh-Lih Chang; Ming-Long Tsai; Yi-Yen Lee; Hung-Hai Ku; Shih-Hwa Chiou

CD133 (prominin-1), a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133+) and CD133-negative cells (LC-CD133−) from tissue samples of ten patients with non-small cell lung cancer (LC) and five LC cell lines. LC-CD133+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133+, unlike LC-CD133−, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel) and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133+ to form spheres and can further facilitate LC-CD133+ to differentiate into LC-CD133−. In addition, knock-down of Oct-4 expression in LC-CD133+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose) polymerase (PARP). Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133+ and malignant lung cancer.


Stem Cells and Development | 2010

Functional Improvement of Focal Cerebral Ischemia Injury by Subdural Transplantation of Induced Pluripotent Stem Cells with Fibrin Glue

Shih-Jen Chen; Chia-Ming Chang; Shen-Kou Tsai; Yuh-Lih Chang; Shih-Jie Chou; Shiang-Suo Huang; Lung-Kuo Tai; Yu-Chih Chen; Hung-Hai Ku; Hsin-Yang Li; Shih-Hwa Chiou

Ischemic stroke is the leading cause of disability in the world. Cell transplantation has emerged in various neurological diseases as a potential therapeutic approach in the postacute stroke phase. Recently, inducible pluripotent stem (iPS) cells showed potential for multilineage differentiation and provide a resource for stem cell-based therapies. However, whether iPS transplantation could improve the function of stroke-like model is still an open question. The aim of this study is to investigate the therapeutic effects of subdural transplantation of iPS mixed with fibrin glue (iPS-FG) on cerebral ischemic rats induced by middle cerebral artery occlusion (MCAO). We demonstrated an efficient method to differentiate iPS into astroglial-like and neuron-like cells which display functional electrophysiological properties. In vivo study firstly showed that the direct injection of iPS into damaged areas of rat cortex significantly decreased the infarct size and improved the motor function in rats with MCAO. Furthermore, we found that the subdural iPS-FG can also effectively reduce the total infarct volume and greatly improve the behavior of rats with MCAO to perform rotarod and grasping tasks. Importantly, analysis of cytokine expression in iPS-FG-treated ischemic brains revealed a significant reduction of pro-inflammatory cytokines and an increase of anti-inflammatory cytokines. Taken together, these results suggest that iPS cells could improve the motor function, reduce infarct size, attenuate inflammation cytokines, and mediate neuroprotection after ischemic stroke. Subdural iPS-FG could be considered as a more safe approach because this method can avoid iatrogenic injury to brain parenchyma and enhance recovering from stoke-induced impairment.


European Neuropsychopharmacology | 2008

Neuroprotection by Imipramine against lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway

Chi-Hsien Peng; Shih-Hwa Chiou; Shih-Jen Chen; Yueh-Ching Chou; Hung-Hai Ku; Cheng-Kuo Cheng; Chih-Ju Yen; Tung-Hu Tsai; Yuh-Lih Chang; Chun-Lan Kao

Depression is accompanied by the activation of the inflammatory-response system, and increased production of proinflammatory cytokines may play a role in the pathophysiology of depressive disorders. Imipramine (IM), a tricyclic antidepressant drug, has recently been shown to promote neurogenesis and improve the survival rate of neurons in the hippocampus. However, whether IM elicits a neuroprotective or anti-inflammatory effect, or promotes the differentiation of neural stem cells (NSCs) remains to be elucidated. In this study, we cultured NSCs derived from the hippocampal tissues of adult rats as an in vitro model to evaluate the NSCs drug-modulation effects of IM. Our results showed that 3 microM IM treatment significantly increased the survival rate of NSCs, and up-regulated the mRNA and protein expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 in Day-7 IM-treated NSCs. Similar to BDNF-treated effect, incubation of NSCs with 3 microM IM increased Bcl-2 protein levels and further prevented lipopolysaccharide (LPS)-induced apoptosis through the activation of the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) pathway. Inhibition of BDNF expression with small interfering RNA (siRNA), or blocking the MAPK pathway with U0126 further significantly decreased Bcl-2 protein levels and abrogated the neuroprotective effects of IM against LPS-induced apoptosis in NSCs. In addition, the percentages of serotonin and MAP-2-positive neuronal cells in the Day 7 culture of IM-treated NSCs were significantly increased. By using microdialysis with high performance liquid chromatography-electrochemical detection, the functional release of serotonin in the process of serotoninergic differentiation of IM-treated NSCs was concomitantly increasing and mediated by the activation of the BDNF/MAPK/ERK pathway/Bcl-2 cascades. In sum, the study results indicate that IM can increase the neuroprotective effects, suppress the LPS-induced inflammatory process, and promote serotoninergic differentiation in NSCs via the modulation of the BDNF/MAPK/ERK pathway/Bcl-2 cascades.


Stem Cells and Development | 2010

Resveratrol Promotes Osteogenic Differentiation and Protects Against Dexamethasone Damage in Murine Induced Pluripotent Stem Cells

Chung-Lan Kao; Lung-Kuo Tai; Shih-Hwa Chiou; Yi-Jen Chen; Kung-Hsiung Lee; Shih-Jie Chou; Yuh-Lih Chang; Chia-Ming Chang; Shih-Jen Chen; Hung-Hai Ku; Hsin-Yang Li

Resveratrol is a natural polyphenol antioxidant that has been shown to facilitate osteogenic differentiation. A recent breakthrough has demonstrated that ectopic expression of four genes is sufficient to reprogram murine and human fibroblasts into induced pluripotent stem (iPS) cells. However, the roles of resveratrol in the differentiation and cytoprotection of iPS cells have never been studied. In this study, we showed that, in addition to cardiac cells, neuron-like cells, and adipocytes, mouse iPS cells could differentiate into osteocyte-like cells. Using atomic force microscopy that provided nanoscale resolution, we monitored mechanical properties of living iPS cells during osteogenic differentiation. The intensity of mineralization and stiffness in differentiating iPS significantly increased after 14 days of osteogenic induction. Furthermore, resveratrol was found to facilitate osteogenic differentiation in both iPS and embryonic stem cells, as shown by increased mineralization, up-regulation of osteogenic markers, and decreased elastic modulus. Dexamethasone-induced apoptosis in iPS cell-derived osteocyte-like cells was effectively prevented by pretreatment with resveratrol. Furthermore, resveratrol significantly increased manganese superoxide dismutase expression and intracellular glutathione level, thereby efficiently decreasing dexamethasone-induced reactive oxygen species (ROS) production and cytotoxicity. Transplantation experiments using iPS cell-derived osteocyte-like cells further demonstrated that oral intake of resveratrol could up-regulate osteopontin expression and inhibit teratoma formation in vivo. In sum, resveratrol can facilitate differentiation of iPS cells into osteocyte-like cells, protect these iPS cell-derived osteocyte-like cells from glucocorticoid-induced oxidative damage, and decrease tumorigenicity of iPS cells. These findings implicate roles of resveratrol and iPS cells in the stem cell therapy of orthopedic diseases.


British Journal of Pharmacology | 2006

Moclobemide upregulated Bcl‐2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular‐regulated kinase pathway

Shih-Hwa Chiou; Hung-Hai Ku; Tung-Hu Tsai; Heng-Liang Lin; Li-Hsin Chen; Chan-Shiu Chien; Larry L.-T. Ho; Chen-Hsen Lee; Yuh-Lih Chang

1 Moclobemide (MB) is an antidepressant drug that selectively and reversibly inhibits monoamine oxidase‐A. Recent studies have revealed that antidepressant drugs possess the characters of potent growth‐promoting factors for the development of neurogenesis and improve the survival rate of serotonin (5‐hydroxytrytamine; 5‐HT) neurons. However, whether MB comprises neuroprotection effects or modulates the proliferation of neural stem cells (NSCs) needs to be elucidated. 2 In this study, firstly, we used the MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay to demonstrate that 50 μM MB can increase the cell viability of NSCs. The result of real‐time reverse transcription–polymerase chain reaction (RT–PCR) showed that the induction of MB can upregulate the gene expressions of Bcl‐2 and Bcl‐xL. By using caspases 8 and 3, ELISA and terminal dUTP nick‐end labeling (TUNEL) assay, our data further confirmed that 50 μM MB‐treated NSCs can prevent FasL‐induced apoptosis. 3 The morphological findings also supported the evidence that MB can facilitate the dendritic development and increase the neurite expansion of NSCs. Moreover, we found that MB treatment increased the expression of Bcl‐2 in NSCs through activating the extracellular‐regulated kinase (ERK) phosphorylation. 4 By using the triple‐staining immunofluorescent study, the percentages of serotonin‐ and MAP‐2‐positive cells in the day 7 culture of MB‐treated NSCs were significantly increased (P<0.01). Furthermore, our data supported that MB treatment increased functional production of serotonin in NSCs via the modulation of ERK1/2. In sum, the study results support that MB can upregulate Bcl‐2 expression and induce the differentiation of NSCs into serotoninergic neuron via ERK pathway.


Journal of Pharmacology and Experimental Therapeutics | 2010

Induction of Insulin-Producing Cells Derived from Endometrial Mesenchymal Stem-like Cells

Hsin-Yang Li; Yi-Jen Chen; Shih-Jen Chen; Chung-Lan Kao; Ling-Ming Tseng; Wen-Liang Lo; Chia-Ming Chang; Der-Ming Yang; Hung-Hai Ku; Nae-Fang Twu; Chen-Yi Liao; Shih-Hwa Chiou; Yuh-Lih Chang

Studies have demonstrated that mesenchymal stem-like cells can be isolated from endometrium. However, the potential of endometrial-derived stem cells to differentiate into insulin-positive cells and functionally secrete insulin remains undetermined. We isolated endometrial mesenchymal stem-like cells (EMSCs) from human endometrial tissue from six donors. The insulin-secreting function of EMSCs was further analyzed in vitro and in transplanted grafts in vivo. We successfully isolated EMSCs from human endometrium, and our results showed that EMSCs expressed high levels of stemness genes (Nanog, Oct-4, Nestin). Under specific induction conditions for 2 weeks, EMSCs formed three-dimensional spheroid bodies (SBs) and secreted C-peptide. The high insulin content of SB-EMSCs was confirmed by enzyme-linked immunosorbent assay, and glucose responsiveness was demonstrated by measuring glucose-dependent insulin secretion. Using cDNA microarrays, we found that the expression profiles of SB-EMSCs are related to those of islet tissues. Insulin and C-peptide production in response to glucose was significantly higher in SB-EMSCs than in undifferentiated EMSC controls. Furthermore, upon differentiation, SB-EMSCs displayed increased mRNA expression levels of NKx2.2, Glut2, insulin, glucagon, and somatostatin. Our results also showed that SB-EMSCs were more resistant to oxidative damage and oxidative damage-induced apoptosis than fibroblasts from the same patient. It is noteworthy that SB-EMSCs xenotransplanted into immunocompromised mice with streptozotocin-induced diabetes restored blood insulin levels to control values and greatly prolonged the survival of graft cells. These data suggest that EMSCs not only play a novel role in the differentiation of pancreatic progenitors, but also can functionally enhance insulin production to restore the regulation of blood glucose levels in an in vivo transplantation model.


Current Neurovascular Research | 2007

Antidepressant Administration Modulates Neural Stem Cell Survival and Serotoninergic Differentiation Through Bcl-2

Shih-Jen Chen; Chun-Lan Kao; Yuh-Lih Chang; Chih-Ju Yen; Jia-Wei Shui; Chan-Shiu Chien; I-Lin Chen; Tung-Hu Tsai; Hung-Hai Ku; Shih-Hwa Chiou

The hippocampus has long been associated with learning, memory, and modulation of emotional responses. Previous studies demonstrated that stress-induced loss of hippocampal neurons may contribute to the pathogenesis of depression. The recent observations supported that antidepressant drugs increase the production of serotoninergic neurotransmitter and they play a critical role in the initiation of neurogenesis in the hippocampus. In order to explore the possible new mechanism of the treatment of depression, we cultured neural stem cells (NSCs) derived from the hippocampus of adult rats as an in vitro model to evaluate the capabilities of neuroprotection and neural differentiation in NSCs by fluoxetine (FL) treatment. Our results showed that 20 microM FL treatment can significantly increase the proliferation rate of NSCs (p<0.05), and up-regulate the mRNA and protein expressions of Bcl-2 in Day-7 FL-treated NSCs (p<0.01). Using Bcl-2 gene silencing with small interfering RNA, our data verified that FL can prevent Fas ligand-induced caspase-dependent apoptosis in NSCs through the activation of Bcl-2. The in vitro observation and immunofluorescent study further demonstrated that FL treatment can stimulate the neurite development and serotoninergic differentiation of NSCs through the activation of Bcl-2. Using microdialysis with high performance liquid chromatography- electrochemical detection, the functional release of serotonin in the differentiating NSCs with FL treatment was increased and simultaneously regulated by the Bcl-2 expressions. In sum, the study results indicate that antidepressant administration can increase NSCs survival, promote the neurite development, and facilitate NSCs differentiating into the functional serotoninergic neurons via the modulation of Bcl-2 expression.


Journal of Chromatography A | 2001

Determination and pharmacokinetic study of unbound cefepime in rat bile by liquid chromatography with on-line microdialysis.

Yuh-Lih Chang; M.H. Chou; M.F. Lin; Chun-Ming Chen; Tzung-Jiun Tsai

Biliary excretion and intestinal reabsorption in enterohepatic circulation play major dispositional roles for some drugs. To investigate biliary excretion of drug, we inserted a microdialysis probe into the bile common duct of rat between the liver and the duodenum. In order to avoid the obstruction of bile fluid or bile salt waste, a shunt linear microdialysis probe was used for simultaneous and continuous sampling following intravenous administration of cefepime (50 mg/kg, i.v.). Separation and quantitation of cefepime in the dialysates were achieved using a LiChrosorb RP-18 column (Merck; 250x4.6 mm I.D., particle size 5 microm) maintained at ambient temperature. Samples were eluted with a mobile phase containing 100 mM monosodium phosphoric acid (pH 3.0)-methanol (87:13, v/v). The UV detector wavelength was set at 270 nm. The result indicates that the elimination half-life of cefepime in bile was 64.01+/-9.32 min. This study also served as an example for the microdialysis application in the biliary excretion study of drug.


Biomaterials | 2011

Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium

Chi-Hsien Peng; Jong-Yuh Cherng; Guang-Yuh Chiou; Yu-Chih Chen; Chen-Hsiu Chien; Chung-Lan Kao; Yuh-Lih Chang; Yueh Chien; Liang-Kung Chen; Jorn-Hon Liu; Shih-Jen Chen; Shih-Hwa Chiou

Cationic polyurethane, a biodegradable non-viral vector, protects DNA from nuclease degradation and helps to deliver genes efficiently. Oct4, a POU-domain transcription factor, is highly expressed in maintaining pluripotency and cellular reprogramming process in stem cells. SirT1, a NAD-dependent histone deacetylase, is an essential mediator of cellular longevity. Herein we demonstrated that both Oct4 and SirT1 (Oct4/SirT1) expression was decreased in an age-dependent manner in retina with aged-related macular degeneration and retinal pigment epithelium cells (RPEs). To investigate the possible rescuing role of Oct4/SirT1, polyurethane-short branch polyethylenimine (PU-PEI) was used to deliver Oct4/SirT1 into aged RPEs (aRPEs) or light-injured rat retinas. Oct4/SirT1 overexpression increased the expression of several progenitor-related genes and the self-renewal ability of aRPEs. Moreover, Oct4/SirT1 overexpression resulted in the demethylation of the Oct4 promoter and enhanced the expression of antioxidant enzymes, which was accompanied by a decrease in intracellular ROS production and hydrogen peroxide-induced oxidative stress. Importantly, PU-PEI-mediated Oct4/SirT1 gene transfer rescued retinal cell loss and improved electroretinographic responses in light-injured rat retinas. In summary, these data suggest that PU-PEI-mediated delivery of Oct4/SirT1 reprograms aRPEs into a more primitive state and results in cytoprotection by regulating the antioxidative capabilities of these cells.


Journal of Pharmacology and Experimental Therapeutics | 2012

Targeting Signal Transducer and Activator of Transcription 3 Pathway by Cucurbitacin I Diminishes Self-Renewing and Radiochemoresistant Abilities in Thyroid Cancer-Derived CD133+ Cells

Ling-Ming Tseng; Pin-I Huang; Yu-Rung Chen; Yu-Chih Chen; Yueh-Ching Chou; Yi-Wei Chen; Yuh-Lih Chang; Han-Shui Hsu; Yuan-Tzu Lan; Kuan-Hsuan Chen; Chin-Wen Chi; Shih-Hwa Chiou; De-Ming Yang; Chen-Hsen Lee

Anaplastic thyroid cancer (ATC) is a lethal solid tumor with poor prognosis because of its invasiveness and its resistance to current therapies. Recently, ATC-CD133+ cells were found to have cancer stem cell (CSC) properties and were suggested to be important contributors to tumorigenicity and cancer metastasis. However, the molecular pathways and therapeutic targets in thyroid cancer-related CSCs remain undetermined. In this study, ATC-CD133+ cells were isolated and found to have increased tumorigenicity, radioresistance, and higher expression of both embryonic stem cell-related and drug resistance-related genes compared with ATC-CD133− cells. Microarray bioinformatics analysis suggested that the signal transducer and activator of transcription 3 (STAT3) pathway could be important in regulating the stemness signature in ATC-CD133+ cells; therefore, the effect of the potent STAT3 inhibitor cucurbitacin I in ATC-CD133+ cells was evaluated in this study. Treatment of ATC-CD133+ cells with cucurbitacin I diminished their CSC-like abilities, inhibited their stemness gene signature, and facilitated their differentiation into ATC-CD133− cells. Of note, treatment of ATC-CD133+ cells with cucurbitacin I up-regulated the expression of thyroid-specific genes and significantly enhanced radioiodine uptake. Furthermore, cucurbitacin I treatment increased the sensitivity of ATC-CD133+ cells to radiation and chemotherapeutic drugs through apoptosis. Finally, xenotransplantation experiments revealed that cucurbitacin I plus radiochemotherapy significantly suppressed tumorigenesis and improved survival in immunocompromised mice into which ATC-CD133+ cells were transplanted. In summary, these results show that the STAT3 pathway plays a key role in mediating CSC properties in ATC-CD133+ cells. Targeting STAT3 with cucurbitacin I in ATC may provide a new approach for therapeutic treatment in the future.

Collaboration


Dive into the Yuh-Lih Chang's collaboration.

Top Co-Authors

Avatar

Shih-Hwa Chiou

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Hsin-Yang Li

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Tung-Hu Tsai

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Hung-Hai Ku

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Shih-Jen Chen

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yueh Chien

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yueh-Ching Chou

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Chi-Hsien Peng

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar

Pin-I Huang

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Wen-Liang Lo

Taipei Veterans General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge