Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ping Luo is active.

Publication


Featured researches published by Ping Luo.


international conference on computer vision | 2015

Deep Learning Face Attributes in the Wild

Ziwei Liu; Ping Luo; Xiaogang Wang; Xiaoou Tang

Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.


european conference on computer vision | 2014

Facial Landmark Detection by Deep Multi-task Learning

Zhanpeng Zhang; Ping Luo; Chen Change Loy; Xiaoou Tang

Facial landmark detection has long been impeded by the problems of occlusion and pose variation. Instead of treating the detection task as a single and independent problem, we investigate the possibility of improving detection robustness through multi-task learning. Specifically, we wish to optimize facial landmark detection together with heterogeneous but subtly correlated tasks, e.g. head pose estimation and facial attribute inference. This is non-trivial since different tasks have different learning difficulties and convergence rates. To address this problem, we formulate a novel tasks-constrained deep model, with task-wise early stopping to facilitate learning convergence. Extensive evaluations show that the proposed task-constrained learning (i) outperforms existing methods, especially in dealing with faces with severe occlusion and pose variation, and (ii) reduces model complexity drastically compared to the state-of-the-art method based on cascaded deep model [21].


international conference on computer vision | 2015

Semantic Image Segmentation via Deep Parsing Network

Ziwei Liu; Xiaoxiao Li; Ping Luo; Chen Change Loy; Xiaoou Tang

This paper addresses semantic image segmentation by incorporating rich information into Markov Random Field (MRF), including high-order relations and mixture of label contexts. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic end-to-end computation in a single forward pass. Specifically, DPN extends a contemporary CNN architecture to model unary terms and additional layers are carefully devised to approximate the mean field algorithm (MF) for pairwise terms. It has several appealing properties. First, different from the recent works that combined CNN and MRF, where many iterations of MF were required for each training image during back-propagation, DPN is able to achieve high performance by approximating one iteration of MF. Second, DPN represents various types of pairwise terms, making many existing works as its special cases. Third, DPN makes MF easier to be parallelized and speeded up in Graphical Processing Unit (GPU). DPN is thoroughly evaluated on the PASCAL VOC 2012 dataset, where a single DPN model yields a new state-of-the-art segmentation accuracy of 77.5%.


international conference on computer vision | 2015

From Facial Parts Responses to Face Detection: A Deep Learning Approach

Shuo Yang; Ping Luo; Chen Change Loy; Xiaoou Tang

In this paper, we propose a novel deep convolutional network (DCN) that achieves outstanding performance on FDDB, PASCAL Face, and AFW. Specifically, our method achieves a high recall rate of 90.99% on the challenging FDDB benchmark, outperforming the state-of-the-art method [23] by a large margin of 2.91%. Importantly, we consider finding faces from a new perspective through scoring facial parts responses by their spatial structure and arrangement. The scoring mechanism is carefully formulated considering challenging cases where faces are only partially visible. This consideration allows our network to detect faces under severe occlusion and unconstrained pose variation, which are the main difficulty and bottleneck of most existing face detection approaches. We show that despite the use of DCN, our network can achieve practical runtime speed.


computer vision and pattern recognition | 2015

DeepID-Net: Deformable deep convolutional neural networks for object detection

Wanli Ouyang; Xiaogang Wang; Xingyu Zeng; Shi Qiu; Ping Luo; Yonglong Tian; Hongsheng Li; Shuo Yang; Zhe Wang; Chen Change Loy; Xiaoou Tang

In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [14], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline.


computer vision and pattern recognition | 2014

Switchable Deep Network for Pedestrian Detection

Ping Luo; Yonglong Tian; Xiaogang Wang; Xiaoou Tang

In this paper, we propose a Switchable Deep Network (SDN) for pedestrian detection. The SDN automatically learns hierarchical features, salience maps, and mixture representations of different body parts. Pedestrian detection faces the challenges of background clutter and large variations of pedestrian appearance due to pose and viewpoint changes and other factors. One of our key contributions is to propose a Switchable Restricted Boltzmann Machine (SRBM) to explicitly model the complex mixture of visual variations at multiple levels. At the feature levels, it automatically estimates saliency maps for each test sample in order to separate background clutters from discriminative regions for pedestrian detection. At the part and body levels, it is able to infer the most appropriate template for the mixture models of each part and the whole body. We have devised a new generative algorithm to effectively pretrain the SDN and then fine-tune it with back-propagation. Our approach is evaluated on the Caltech and ETH datasets and achieves the state-of-the-art detection performance.


international conference on computer vision | 2015

Deep Learning Strong Parts for Pedestrian Detection

Yonglong Tian; Ping Luo; Xiaogang Wang; Xiaoou Tang

Recent advances in pedestrian detection are attained by transferring the learned features of Convolutional Neural Network (ConvNet) to pedestrians. This ConvNet is typically pre-trained with massive general object categories (e.g. ImageNet). Although these features are able to handle variations such as poses, viewpoints, and lightings, they may fail when pedestrian images with complex occlusions are present. Occlusion handling is one of the most important problem in pedestrian detection. Unlike previous deep models that directly learned a single detector for pedestrian detection, we propose DeepParts, which consists of extensive part detectors. DeepParts has several appealing properties. First, DeepParts can be trained on weakly labeled data, i.e. only pedestrian bounding boxes without part annotations are provided. Second, DeepParts is able to handle low IoU positive proposals that shift away from ground truth. Third, each part detector in DeepParts is a strong detector that can detect pedestrian by observing only a part of a proposal. Extensive experiments in Caltech dataset demonstrate the effectiveness of DeepParts, which yields a new state-of-the-art miss rate of 11:89%, outperforming the second best method by 10%.


computer vision and pattern recognition | 2016

WIDER FACE: A Face Detection Benchmark

Shuo Yang; Ping Luo; Chen Change Loy; Xiaoou Tang

Face detection is one of the most studied topics in the computer vision community. Much of the progresses have been made by the availability of face detection benchmark datasets. We show that there is a gap between current face detection performance and the real world requirements. To facilitate future face detection research, we introduce the WIDER FACE dataset1, which is 10 times larger than existing datasets. The dataset contains rich annotations, including occlusions, poses, event categories, and face bounding boxes. Faces in the proposed dataset are extremely challenging due to large variations in scale, pose and occlusion, as shown in Fig. 1. Furthermore, we show that WIDER FACE dataset is an effective training source for face detection. We benchmark several representative detection systems, providing an overview of state-of-the-art performance and propose a solution to deal with large scale variation. Finally, we discuss common failure cases that worth to be further investigated.


computer vision and pattern recognition | 2016

DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations

Ziwei Liu; Ping Luo; Shi Qiu; Xiaogang Wang; Xiaoou Tang

Recent advances in clothes recognition have been driven by the construction of clothes datasets. Existing datasets are limited in the amount of annotations and are difficult to cope with the various challenges in real-world applications. In this work, we introduce DeepFashion1, a large-scale clothes dataset with comprehensive annotations. It contains over 800,000 images, which are richly annotated with massive attributes, clothing landmarks, and correspondence of images taken under different scenarios including store, street snapshot, and consumer. Such rich annotations enable the development of powerful algorithms in clothes recognition and facilitating future researches. To demonstrate the advantages of DeepFashion, we propose a new deep model, namely FashionNet, which learns clothing features by jointly predicting clothing attributes and landmarks. The estimated landmarks are then employed to pool or gate the learned features. It is optimized in an iterative manner. Extensive experiments demonstrate the effectiveness of FashionNet and the usefulness of DeepFashion.


computer vision and pattern recognition | 2015

Pedestrian detection aided by deep learning semantic tasks

Yonglong Tian; Ping Luo; Xiaogang Wang; Xiaoou Tang

Deep learning methods have achieved great successes in pedestrian detection, owing to its ability to learn discriminative features from raw pixels. However, they treat pedestrian detection as a single binary classification task, which may confuse positive with hard negative samples (Fig.1 (a)). To address this ambiguity, this work jointly optimize pedestrian detection with semantic tasks, including pedestrian attributes (e.g. `carrying backpack) and scene attributes (e.g. `vehicle, `tree, and `horizontal). Rather than expensively annotating scene attributes, we transfer attributes information from existing scene segmentation datasets to the pedestrian dataset, by proposing a novel deep model to learn high-level features from multiple tasks and multiple data sources. Since distinct tasks have distinct convergence rates and data from different datasets have different distributions, a multi-task deep model is carefully designed to coordinate tasks and reduce discrepancies among datasets. Extensive evaluations show that the proposed approach outperforms the state-of-the-art on the challenging Caltech [9] and ETH [10] datasets where it reduces the miss rates of previous deep models by 17 and 5.5 percent, respectively.

Collaboration


Dive into the Ping Luo's collaboration.

Top Co-Authors

Avatar

Xiaoou Tang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Xiaogang Wang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Chen Change Loy

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Liang Lin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ziwei Liu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Shuo Yang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Zhenyao Zhu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Zhanpeng Zhang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yonglong Tian

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaoxiao Li

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge