Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoou Tang is active.

Publication


Featured researches published by Xiaoou Tang.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013

Guided Image Filtering

Kaiming He; Jian Sun; Xiaoou Tang

In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011

Single Image Haze Removal Using Dark Channel Prior

Kaiming He; Jian Sun; Xiaoou Tang

In this paper, we propose a simple but effective image prior - dark channel prior to remove haze from a single input image. The dark channel prior is a kind of statistics of the haze-free outdoor images. It is based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in at least one color channel. Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high quality haze-free image. Results on a variety of outdoor haze images demonstrate the power of the proposed prior. Moreover, a high quality depth map can also be obtained as a by-product of haze removal.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011

Learning to Detect a Salient Object

Tie Liu; Zejian Yuan; Jian Sun; Jingdong Wang; Nanning Zheng; Xiaoou Tang; Heung-Yeung Shum

In this paper, we study the salient object detection problem for images. We formulate this problem as a binary labeling task where we separate the salient object from the background. We propose a set of novel features, including multiscale contrast, center-surround histogram, and color spatial distribution, to describe a salient object locally, regionally, and globally. A conditional random field is learned to effectively combine these features for salient object detection. Further, we extend the proposed approach to detect a salient object from sequential images by introducing the dynamic salient features. We collected a large image database containing tens of thousands of carefully labeled images by multiple users and a video segment database, and conducted a set of experiments over them to demonstrate the effectiveness of the proposed approach.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006

Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

Dacheng Tao; Xiaoou Tang; Xuelong Li; Xindong Wu

Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVMs optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016

Image Super-Resolution Using Deep Convolutional Networks

Chao Dong; Chen Change Loy; Kaiming He; Xiaoou Tang

We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.


european conference on computer vision | 2010

Guided image filtering

Kaiming He; Jian Sun; Xiaoou Tang

In this paper, we propose a novel type of explicit image filter - guided filter. Derived from a local linear model, the guided filter generates the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can perform as an edge-preserving smoothing operator like the popular bilateral filter [1], but has better behavior near the edges. It also has a theoretical connection with the matting Laplacian matrix [2], so is a more generic concept than a smoothing operator and can better utilize the structures in the guidance image. Moreover, the guided filter has a fast and non-approximate linear-time algorithm, whose computational complexity is independent of the filtering kernel size. We demonstrate that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications including noise reduction, detail smoothing/enhancement, HDR compression, image matting/feathering, haze removal, and joint upsampling.


european conference on computer vision | 2014

Learning a Deep Convolutional Network for Image Super-Resolution

Chao Dong; Chen Change Loy; Kaiming He; Xiaoou Tang

We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) [15] that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage.


computer vision and pattern recognition | 2014

Deep Learning Face Representation from Predicting 10,000 Classes

Yi Sun; Xiaogang Wang; Xiaoou Tang

This paper proposes to learn a set of high-level feature representations through deep learning, referred to as Deep hidden IDentity features (DeepID), for face verification. We argue that DeepID can be effectively learned through challenging multi-class face identification tasks, whilst they can be generalized to other tasks (such as verification) and new identities unseen in the training set. Moreover, the generalization capability of DeepID increases as more face classes are to be predicted at training. DeepID features are taken from the last hidden layer neuron activations of deep convolutional networks (ConvNets). When learned as classifiers to recognize about 10, 000 face identities in the training set and configured to keep reducing the neuron numbers along the feature extraction hierarchy, these deep ConvNets gradually form compact identity-related features in the top layers with only a small number of hidden neurons. The proposed features are extracted from various face regions to form complementary and over-complete representations. Any state-of-the-art classifiers can be learned based on these high-level representations for face verification. 97:45% verification accuracy on LFW is achieved with only weakly aligned faces.


computer vision and pattern recognition | 2009

Single image haze removal using dark channel prior

Kaiming He; Jian Sun; Xiaoou Tang

In this paper, we propose a simple but effective image prior - dark channel prior to remove haze from a single input image. The dark channel prior is a kind of statistics of the haze-free outdoor images. It is based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in at least one color channel. Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high quality haze-free image. Results on a variety of outdoor haze images demonstrate the power of the proposed prior. Moreover, a high quality depth map can also be obtained as a by-product of haze removal.


computer vision and pattern recognition | 2013

Deep Convolutional Network Cascade for Facial Point Detection

Yi Sun; Xiaogang Wang; Xiaoou Tang

We propose a new approach for estimation of the positions of facial key points with three-level carefully designed convolutional networks. At each level, the outputs of multiple networks are fused for robust and accurate estimation. Thanks to the deep structures of convolutional networks, global high-level features are extracted over the whole face region at the initialization stage, which help to locate high accuracy key points. There are two folds of advantage for this. First, the texture context information over the entire face is utilized to locate each key point. Second, since the networks are trained to predict all the key points simultaneously, the geometric constraints among key points are implicitly encoded. The method therefore can avoid local minimum caused by ambiguity and data corruption in difficult image samples due to occlusions, large pose variations, and extreme lightings. The networks at the following two levels are trained to locally refine initial predictions and their inputs are limited to small regions around the initial predictions. Several network structures critical for accurate and robust facial point detection are investigated. Extensive experiments show that our approach outperforms state-of-the-art methods in both detection accuracy and reliability.

Collaboration


Dive into the Xiaoou Tang's collaboration.

Top Co-Authors

Avatar

Xiaogang Wang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Chen Change Loy

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ping Luo

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jian Sun

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Dahua Lin

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Qiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge