Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pingfan Rao is active.

Publication


Featured researches published by Pingfan Rao.


Biochemical Journal | 2003

Granular gland transcriptomes in stimulated amphibian skin secretions

Tianbao Chen; Susan Farragher; Anthony J. Bjourson; David F. Orr; Pingfan Rao; Christopher Shaw

Amphibian defensive skin secretions are complex, species-specific cocktails of biologically active molecules, including many uncharacterized peptides. The study of such secretions for novel peptide discovery is time-limited, as amphibians are in rapid global decline. While secretion proteome analysis is non-lethal, transcriptome analysis has until now required killing of specimens prior to skin dissection for cDNA library construction. Here we present the discovery that polyadenylated mRNAs encoding dermal granular gland peptides are present in defensive skin secretions, stabilized by endogenous nucleic acid-binding amphipathic peptides. Thus parallel secretory proteome and transcriptome analyses can be performed without killing the specimen in this model amphibian system--a finding that has important implications in conservation of biodiversity within this threatened vertebrate taxon and whose mechanistics may have broader implications in biomolecular science.


Peptides | 2002

Cicerin and arietin, novel chickpea peptides with different antifungal potencies

X.Y. Ye; T.B. Ng; Pingfan Rao

Two antifungal peptides with novel N-terminal sequences, designated cicerin and arietin were isolated from seeds of the chickpea (Cicer arietinum), respectively. Both peptides were adsorbed on Affi-gel blue gel and CM-Sepharose and exhibited a molecular weight of approximately 8.2 and 5.6 kDa, respectively. Arietin was more strongly adsorbed on CM-Sepharose than cicerin and manifested a higher translation-inhibiting activity in a rabbit reticulocyte lysate system and a higher antifungal potency toward Mycosphaerella arachidicola, Fusarium oxysporum and Botrytis cinerea. Both were devoid of mitogenic and anti-HIV-1 reverse transcriptase activities.


Peptides | 2006

Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri

Jianwu Zhou; Stephen McClean; Alan Hunter Thompson; Yang Zhang; Chris Shaw; Pingfan Rao; Anthony J. Bjourson

Linear, amphipathic and cationic antimicrobial peptides have been previously reported from a wide range of amphibian species especially frogs of the genus Rana. Such antimicrobial peptides are attracting increasing attention in pharmacological applications because they mainly act by permeabilizing and disrupting the target cell or virion membranes with a low degree of resistance. The Guenthers frog, Hylarana guentheri, is a Chinese frog of the genus Rana that is widely distributed in Southern China. It is commonly the dominant amphibian species even where the amphibian population is declining. In this study, we describe the isolation, purification, structural and biological characterization of five novel peptides from H. guentheri frog skin secretions that possess antimicrobial activity, including brevinin-2GHa, brevinin-2GHb, brevinin-2GHc, temporin-GH and a novel antimicrobial peptide named guentherin. The cDNAs encoding two novel members of the brevinin-2 family, brevinin-2GHb and brevinin-2GHc were also subsequently cloned and sequenced.


Peptides | 2006

The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and North American Rana frogs share the same families of skin antimicrobial peptides

Tianbao Chen; Mei Zhou; Pingfan Rao; Brian Walker; Chris Shaw

The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and the North American pickerel frog (Rana palustris) occupy different ecological niches on two different continents with no overlap in geographical distribution. R. palustris skin secretions contain a formidable array of antimicrobial peptides including homologs of brevinin-1, esculentin-1, esculentin-2, ranatuerin-2, a temporin and a family of peptides considered of unique structural attributes when isolated, palustrins 1-3. Here we describe the structures of mature peptides and precursors of eight putative antimicrobial peptides from the skin secretion of the Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis). Each peptide represents a structural homolog of respective peptide families isolated from R. palustris, including two peptides identical in primary structure to palustrin 1c and palustrin 3b. Additionally, two peptides were found to be structural homologs of ranatuerin 2B and ranatuerin 2P from the closely-related North American species, Rana berlandieri (the Rio Grande leopard frog) and Rana pipiens (the Northern leopard frog), respectively. Both palustrins and ranatuerins have hitherto been considered unique to North American ranid frogs. The use of primary structures of amphibian skin antimicrobial peptides is thus questionable as a taxonomic device or alternatively, the micro-evolution and/or ancestry of ranid frogs is more highly complex than previously thought.


Peptides | 2003

Cloning of maximakinin precursor cDNAs from Chinese toad, Bombina maxima, venom

Tianbao Chen; Anthony J. Bjourson; Stephen McClean; David F. Orr; E. O'Kane; Pingfan Rao; Chris Shaw

Using a novel technique that we have developed for cloning of amphibian skin secretion peptide cDNAs from lyophilized samples, we report here that maximakinin (DLPKINRKGP-bradykinin) is encoded by two different cDNAs, named BMK-1 and BMK-2, containing either four tandem repeat sequences or a single copy. The open reading frames of both precursor cDNAs were found to be 152 and 116 amino acid residues, respectively. These data provide evidence that the structural diversity of peptides in amphibian skin secretions arising from molecular evolutionary events, can be mediated by parallel diversity in encoding mRNAs that in itself may reflect serial gene duplications.


Analytical Biochemistry | 2002

Unmasking venom gland transcriptomes in reptile venoms

Tianbao Chen; Anthony J. Bjourson; David F. Orr; Hang Fai Kwok; Pingfan Rao; Craig Ivanyi; Chris Shaw

While structural studies of reptile venom toxins can be achieved using lyophilized venom samples, until now the cloning of precursor cDNAs required sacrifice of the specimen for dissection of the venom glands. Here we describe a simple and rapid technique that unmasks venom protein mRNAs present in lyophilized venom samples. To illustrate the technique we have RT-PCR-amplified a range of venom protein transcripts from cDNA libraries derived from the venoms of a hemotoxic snake, the Chinese copperhead (Deinagkistrodon acutus), a neurotoxic snake, the black mamba (Dendroaspis polylepis), and a venomous lizard, the Gila monster (Heloderma suspectum). These include a metalloproteinase and phospholipase A2 from D. acutus, a potassium channel blocker, dendrotoxin K, from D. polylepis, and exendin-4 from H. suspectum. These findings imply that the apparent absence and/or lability of mRNA in complex biological matrices is not always real and paves the way for accelerated acquisition of molecular genetic data on venom toxins for scientific and potential therapeutic purposes without sacrifice of endangered herpetofauna.


Peptides | 2006

Isolation and characterization of a novel mung bean protease inhibitor with antipathogenic and anti-proliferative activities.

Shaoyun Wang; Juan Lin; Mingyu Ye; Tzi Bun Ng; Pingfan Rao; Xiuyun Ye

A novel protease inhibitor, designated mungoin, with both antifungal and antibacterial activities, and exhibiting a molecular mass of 10kDa in SDS-polyacrylamide gel electrophoresis, was isolated from mung bean (Phaseolus mungo) seeds. The isolation procedure involved a combination of extraction, ammonium sulfate precipitation, ion exchange chromatography on CM-Sephadex, and high-performance liquid chromatography (HPLC) on SP-Toyopearl. Its isoelectric point was estimated to be 9.8 by isoelectric focusing. Its N-terminal amino acid sequence was determined to be EMPGKPACLDTDDFCYKP, demonstrating some resemblance to the C-terminal sequences of other protease inhibitors and inhibitor precursors from leguminous plants. It exerted a potent inhibitory action toward a variety of fungal species including Physalospora piricola, Mycosphaerella arachidicola, Botrytis cinerea, Pythium aphanidermatum, Sclerotium rolfsii and Fusarium oxysporum, as well as an antibacterial action against Staphylococcus aureus. In addition, this novel plant protease inhibitor displayed anti-proliferative activity toward tumor cells.


Journal of Agricultural and Food Chemistry | 2014

Novel Peptide with a Specific Calcium-Binding Capacity from Whey Protein Hydrolysate and the Possible Chelating Mode

Lina Zhao; Qimin Huang; Shunli Huang; Jiaping Lin; Shaoyun Wang; Yifan Huang; Jing Hong; Pingfan Rao

A novel peptide with a specific calcium-binding capacity was isolated from whey protein hydrolysates. The isolation procedures included diethylaminoethyl (DEAE) anion-exchange chromatography, Sephadex G-25 gel filtration, and reversed-phase high-performance liquid chromatography (HPLC). A peptide with a molecular mass of 237.99 Da was identified by liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS), and its amino acid sequence was confirmed to be Gly-Tyr. The calcium-binding capacity of Gly-Tyr reached 75.38 μg/mg, increasing by 122% when compared to the hydrolysate complex. The chelating interaction mode between the Gly-Tyr and calcium ion was investigated, indicating that the major binding sites included the oxygen atom of the carbonyl group and nitrogen of the amino or imino group. The folding and structural modification of the peptide arose along with the addition of the calcium ion. The profile of (1)H nuclear magnetic resonance (NMR) spectroscopy demonstrated that the electron cloud density around the hydrogen nucleus in the peptide changed was caused by the calcium ion. The results of ζ potential showed that the Gly-Tyr-Ca chelate was a neutral molecule in which the calcium ion was surrounded by the specific binding sites of the peptide. Moreover, thermogravimetry-differential scanning calorimetry (TG-DSC) and calcium-releasing assay revealed that the Gly-Tyr-Ca chelate exerted excellent thermal stability and solubility in both acidic and basic conditions, which were beneficial to calcium absorption in the gastrointestinal tract of the human body and, therefore, improved its bioavailability. These findings further the progress in the research of whey protein, suggesting the potential in making peptide-calcium chelate as a dietary supplement.


Regulatory Peptides | 2003

Kinestatin: a novel bradykinin B2 receptor antagonist peptide from the skin secretion of the Chinese toad, Bombina maxima

Tianbao Chen; Martin O'Rourke; David F. Orr; Daniel J.M. Coulter; David Hirst; Pingfan Rao; Chris Shaw

We have isolated a novel bradykinin B(2)-receptor antagonist peptide, kinestatin, from toad (Bombina maxima) defensive skin secretion. Mass spectroscopy established a molecular mass of 931.56 Da and a provisional structure: pGlu-Leu/Ile-Pro-Gly-Leu/Ile-Gly-Pro-Leu/Ile-Arg.amide. The unmodified sequence, -QIPGLGPLRG-, was located at the C-terminus of a 116-amino-acid residue open-reading frame following interrogation of a sequenced B. maxima skin cDNA library database. This confirmed the presence of appropriate primary structural attributes for the observed post-translational modifications present on the mature peptide and established residue 2 as Ile and residues 5/8 as Leu. Kinestatin represents a prototype novel peptide from amphibian skin.


Journal of Dairy Research | 2015

Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate

Shunli Huang; Lina Zhao; Xixi Cai; Shaoyun Wang; Yifan Huang; Jing Hong; Pingfan Rao

The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25:1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.

Collaboration


Dive into the Pingfan Rao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianbao Chen

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge