Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piotr Nowicki is active.

Publication


Featured researches published by Piotr Nowicki.


Conservation Biology | 2009

Advantages of Volunteer-Based Biodiversity Monitoring in Europe

Dirk S. Schmeller; Pierre-Yves Henry; Romain Julliard; Bernd Gruber; Jean Clobert; Frank Dziock; Szabolcs Lengyel; Piotr Nowicki; Eszter Déri; Eduardas Budrys; Tiiu Kull; Kadri Tali; Bianca Bauch; Josef Settele; Chris van Swaay; Andrej Kobler; Valerija Babij; Eva Papastergiadou; Klaus Henle

Without robust and unbiased systems for monitoring, changes in natural systems will remain enigmatic for policy makers, leaving them without a clear idea of the consequences of any environmental policies they might adopt. Generally, biodiversity-monitoring activities are not integrated or evaluated across any large geographic region. The EuMon project conducted the first large-scale evaluation of monitoring practices in Europe through an on-line questionnaire and is reporting on the results of this survey. In September 2007 the EuMon project had documented 395 monitoring schemes for species, which represents a total annual cost of about 4 million euro, involving more than 46,000 persons devoting over 148,000 person-days/year to biodiversity-monitoring activities. Here we focused on the analysis of variations of monitoring practices across a set of taxonomic groups (birds, amphibians and reptiles, mammals, butterflies, plants, and other insects) and across 5 European countries (France, Germany, Hungary, Lithuania, and Poland). Our results suggest that the overall sampling effort of a scheme is linked with the proportion of volunteers involved in that scheme. Because precision is a function of the number of monitored sites and the number of sites is maximized by volunteer involvement, our results do not support the common belief that volunteer-based schemes are too noisy to be informative. Just the opposite, we believe volunteer-based schemes provide relatively reliable data, with state-of-the-art survey designs or data-analysis methods, and consequently can yield unbiased results. Quality of data collected by volunteers is more likely determined by survey design, analytical methodology, and communication skills within the schemes rather than by volunteer involvement per se.


Biodiversity and Conservation | 2008

Butterfly monitoring in Europe: methods, applications and perspectives

Chris van Swaay; Piotr Nowicki; Josef Settele; Arco J. van Strien

Since the first Butterfly Monitoring Scheme in the UK started in the mid-1970s, butterfly monitoring in Europe has developed in more than ten European countries. These schemes are aimed to assess regional and national trends in butterfly abundance per species. We discuss strengths and weaknesses of methods used in these schemes and give examples of applications of the data. A new development is to establish supra-national trends per species and multispecies indicators. Such indicators enable to report against the target to halt biodiversity loss by 2010. Our preliminary European Grassland Butterfly Indicator shows a decline of 50% between 1990 and 2005. We expect to develop a Grassland Butterfly Indicator with an improved coverage across European countries. We see also good perspectives to develop a supra-national indicator for climate change as well as an indicator for woodland butterflies.


Biodiversity and Conservation | 2008

Integrating ongoing biodiversity monitoring: potential benefits and methods

Pierre-Yves Henry; Szabolcs Lengyel; Piotr Nowicki; Romain Julliard; Jean Clobert; Tatjana Čelik; Bernd Gruber; Dirk S. Schmeller; Valerija Babij; Klaus Henle

Halting the loss of biodiversity comes along with the need to quantify biodiversity composition and dynamics at large spatial and temporal scales. Highly standardized, international monitoring networks would be ideal, but they do not exist yet. If we are to assess changes in biodiversity now, combining output available from ongoing monitoring initiatives is the only option. However, integration of biodiversity information across schemes is still very poorly developed. In this paper, we outline practical issues to be considered when planning to combine existing monitoring information. First, we provide an overview of avenues for integration along the four dimensions that characterize a monitoring design: sample size, biological coverage, spatial coverage and temporal coverage. We also emphasize that complementarity in monitoring targets across schemes enables to describe complex processes of biodiversity dynamics, e.g. through relating species traits to the impacts of environmental changes. Second, we review some methods to overcome differences in designs among monitoring schemes, such as site selection, post-stratification and measurement error. Finally, we point out some commonly used statistical methods that are at hand for combining data or parameter estimates. We especially emphasize the possible levels of data integration (raw data, parameter estimates, or effect size estimates), and the largely under-exploited potential of meta-analysis methods and weighted analyses. This contribution aims to bolster the practice and use of integration of ongoing monitoring initiatives for biodiversity assessment.


Oecologia | 2009

Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics

Piotr Nowicki; Simona Bonelli; Francesca Barbero; Emilio Balletto

The relative contribution of density-dependent regulation and environmental stochasticity to the temporal dynamics of animal populations is one of the central issues of ecology. In insects, the primary role of the latter factor, typically represented by weather patterns, is widely accepted. We have evaluated the impact of density dependence as well as density-independent factors, including weather and mowing regime, on annual fluctuations of butterfly populations. As model species, we used Maculinea alcon and M. teleius living in sympatry and, consequently, we also analysed the effect of their potential competition. Density dependence alone explained 62 and 42% of the variation in the year-to-year trends of M. alcon and M. teleius, respectively. The cumulative Akaike weight of models with density dependence, which can be interpreted as the probability that this factor should be contained in the most appropriate population dynamics model, exceeded 0.97 for both species. In contrast, the impacts of inter-specific competition, mowing regime and weather were much weaker, with their cumulative weights being in the range of 0.08–0.21; in addition, each of these factors explained only 2–5% of additional variation in Maculinea population trends. Our results provide strong evidence for density-dependent regulation in Maculinea, while the influence of environmental stochasticity is rather minor. In the light of several recent studies on other butterflies that detected significant density-dependent effects, it would appear that density-dependent regulation may be more widespread in this group than previously thought, while the role of environmental stochasticity has probably been overestimated. We suggest that this misconception is the result of deficiencies in the design of most butterfly population studies in the past, including (1) a strong focus on adults and a neglect of the larval stage in which density-dependent effects are most likely to occur; (2) an almost exclusive reliance on transect count results that may confound the impact of environmental stochasticity on butterfly numbers with its impact on adult longevity.


Ecological Entomology | 2010

Local host ant specificity of Phengaris (Maculinea) teleius butterfly, an obligatory social parasite of Myrmica ants

Magdalena Witek; Piotr Nowicki; Ewa B. Śliwińska; Piotr Skórka; Josef Settele; Karsten Schönrogge; Michal Woyciechowski

1. Phengaris butterflies are obligatory social parasites of Myrmica ants. Early research suggested that there is a different Myrmica host species for each of the five European Phengaris social parasites, but more recent studies have shown that this was an oversimplification.


Biodiversity and Conservation | 2008

Process and measurement errors of population size: their mutual effects on precision and bias of estimates for demographic parameters

Thomas Hovestadt; Piotr Nowicki

Knowing the parameters of population growth and regulation is fundamental for answering many ecological questions and the successful implementation of conservation strategies. Moreover, detecting a population trend is often a legal obligation. Yet, inherent process and measurement errors aggravate the ability to estimate these parameters from population time-series. We use numerical simulations to explore how the lengths of the time-series, process and measurement error influence estimates of demographic parameters. We first generate time-series of population sizes with given demographic parameters for density-dependent stochastic population growth, but assume that these population sizes are estimated with measurement errors. We then fit parameters for population growth, habitat capacity, total error and long-term trends to the ‘measured’ time-series data using non-linear regression. The length of the time-series and measurement error introduce a substantial bias in the estimates for population growth rate and to a lesser degree on estimates for habitat capacity, while process error has little effect on parameter bias. The total error term of the statistical model is dominated by process error as long as the latter is larger than the measurement error. A decline in population size is difficult to document as soon as either error becomes moderate, trends are not very pronounced, and time-series are short (<10–15 seasons). Detecting an annual decline of 1% within 6-year reporting periods, as required for the European Union for the species of Community Interest, appears unachievable.


Population Ecology | 2013

Selection on dispersal in isolated butterfly metapopulations

Simona Bonelli; Vladimír Vrabec; Magdalena Witek; Francesca Barbero; Dario Patricelli; Piotr Nowicki

In most metapopulation models dispersal is assumed to be a fixed species-specific trait, but in reality dispersal abilities are highly sensitive to various selective pressures. Strict isolation of a metapopulation, which precludes any influx of immigrants (and their genes) from outside and makes it impossible for emigrants to reach other localities with suitable habitat, thus reducing fitness benefits of long-distance dispersal to zero, may be expected to impose strong selection against dispersal. We tested the above prediction by comparing dispersal parameters derived with the Virtual Migration model for isolated and non-isolated metapopulations of two species of large blue Maculinea (= Phengaris) butterflies, surveyed with intensive mark-recapture. Mortality during dispersal was found to be twice (in M. teleius) to five times higher (in M. arion) in isolated metapopulations. Isolation also resulted in significantly reduced dispersal distances in isolated metapopulations, with the effect being particularly strong in M. arion females. Apart from its evolutionary and ecological consequences, dispersal depression in isolated butterfly metapopulations implied by our results has serious conservation implications. It provides a clear argument against using parameter values obtained in a different environmental setting in modelling applications, e.g., Population Viability Analyses or environmental impact assessment. Furthermore, it underlines the importance of establishing well-connected networks of suitable habitats prior to species release in areas where reintroductions are planned.


Israel Journal of Ecology & Evolution | 2008

InvestIgatIng movement wIthIn Irregularly shaped patches: analysIs of mark-release-recapture data usIng randomIzatIon procedures

Thomas Hovestadt; Piotr Nowicki

The analysis of net-displacement data extracted from mark-release-recapture (MRR) studies is usually based on the assumption that movement follows a random walk in homogeneous space. Yet given sufficient time, within-patch movement cannot conform to this assumption, as maximum net-displacement must be limited by the patchs dimension. We thus suggest a pragmatic protocol for analyzing such MRR data: (1) Test for correlation between the time intervals between captures and displacement distance; if such a correlation is weak, displacement does not follow the rules of a random walk. (2) Test whether net-displacement observed approaches an even density distribution (null-model). (3) Estimate whether net-displacement is limited by the individuals tendency to restrict movement to sub-regions of a patch. For this purpose we developed two randomization algorithms that generate patch-specific distance distributions given that (i) displacement distances converge to an even distribution and habitat use is homogeneo...


Biodiversity and Conservation | 2008

Monitoring crayfish using a mark-recapture method: potentials, recommendations, and limitations

Piotr Nowicki; Tina Tirelli; Rocco Mussat Sartor; Francesca Bona; Daniela Pessani

Crayfish are regarded as useful indicators of environmental quality and freshwater biodiversity. However, reliable methods for monitoring their populations are needed so that this potential can be fully utilised. We report and discuss methodological aspects of the white-clawed crayfish (Austropotamobius pallipes complex) survey conducted in Piedmont, Italy, with the use of mark-recapture. The results suggest that the method can serve as a convenient tool for estimating the size of crayfish populations and inferring their temporal trends. The two populations investigated appeared closed except for wintertime and July. Consequently, the Robust Design, which is regarded as the most reliable mark-recapture approach, can be easily applied. The minimum effective sampling plan for monitoring purposes should comprise one primary period per year, conducted in the summer–autumn season, and consisting of three capture sessions. If gaining insight into the ecology of the investigated species is the prime objective and sufficient resources are available, the optimal plan should include two primary periods (in spring and the summer–autumn season) of five capture sessions each. Capture sessions need to be separated by roughly 2-week intervals in order to avoid the strong, but short-term, negative effect of capturing crayfish on their recapture chances. As the model without heterogeneity in capture probabilities ensures better estimate precision we recommend that data collected for both sexes are analysed separately. Taking into consideration higher male catchabilities and sex ratio being invariably 1:1, it also seems beneficial to estimate only male numbers and double them to achieve total population sizes.


Landscape Ecology | 2013

Different flight behaviour of the endangered scarce large blue butterfly Phengaris teleius (Lepidoptera: Lycaenidae) within and outside its habitat patches

Piotr Skórka; Piotr Nowicki; Magdalena Lenda; Magdalena Witek; Ewa B. Śliwińska; Josef Settele; Michal Woyciechowski

Understanding individual movements in heterogeneous environments is central to predicting how landscape changes affect animal populations. An important but poorly understood phenomenon is behavioural response to habitat boundaries and the way animals cross inhospitable matrix surrounding habitat patches. Here, we analyze movement decisions, flight behaviour, and activity of the endangered scarce large blue Phengaris (Maculinea) teleius, focusing on the differences among the patterns observed in patch interior, at patch boundaries and within matrix. The probability of crossing an external patch boundary, regardless of the land use in the adjacent area, was considerably lower than crossing a ‘control line’ within patch interior. Movement distances, flight durations and net squared displacement were largest in matrix, while similarly smaller at patch boundaries and in patch interior. The distribution of angles between successive movements was clearly clustered around 0° (indicating flight in a straight line) in matrix and at patch boundaries, but not in patch interior. There were no differences in time spent on foraging, resting and ovipositing between patch interior and boundaries, but the first two activities rarely, and oviposition never, happened in matrix. Our results suggest that although P. teleius adults do not avoid using the resources located in the boundaries of habitat patches, they often return to the interior of the patches when crossing their boundaries. However, having entered the matrix the butterflies perform relatively long and straight flights. The estimated probability of emigration and net squared distance implies that the dispersal between local populations is common in this species in the studied area.

Collaboration


Dive into the Piotr Nowicki's collaboration.

Top Co-Authors

Avatar

Piotr Skórka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Josef Settele

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimír Vrabec

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Henle

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge