Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piotr Szweda is active.

Publication


Featured researches published by Piotr Szweda.


Applied Microbiology and Biotechnology | 2012

Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus

Piotr Szweda; Marta Schielmann; Roman Kotłowski; Grzegorz Gorczyca; Magdalena Zalewska; Sławomir Milewski

Bacteria of the genus Staphylococcus are common pathogens responsible for a broad spectrum of human and animal infections and belong to the most important etiological factors causing food poisoning. Because of rapid increase in the prevalence of isolation of staphylococci resistant to many antibiotics, there is an urgent need for the development of new alternative chemotherapeutics. A number of studies have recently demonstrated the strong potential of peptidoglycan hydrolases (PHs) to control and treat infections caused by this group of bacteria. PHs cause rapid lysis and death of bacterial cells. The review concentrates on enzymes hydrolyzing peptidoglycan of staphylococci. Usually, they are characterized by high specificity to only Staphylococcus aureus cell wall components; however, some of them are also able to lyse cells of other staphylococci, e.g., Staphylococcus epidermidis-human pathogen of growing importance and also other groups of bacteria. Some PHs strengthen the bactericidal or bacteriostatic activity of common antibiotics, and as a result, they should be considered as component of combined therapy which could definitely reduced the development of bacterial resistance to both enzymes and antibiotics. The preliminary research revealed that most of these enzymes can be produced using heterologous, especially Escherichia coli expression systems; however, still much effort is required to develop more efficient and large-scale production technologies. This review discusses current state on knowledge with emphasis on the possibilities of application of PHs in the context of therapeutics for infections caused by staphylococci.


Carbohydrate Polymers | 2014

Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution

Grzegorz Gorczyca; Robert Tylingo; Piotr Szweda; Ewa Augustin; Maria Sadowska; Sławomir Milewski

Novel porous scaffolds composed of chitosan, collagen and gelatin were prepared by the multistep procedure involving final freeze-drying and characterized. To eliminate the need for residual acid removal from the material after drying, carbon dioxide saturation process was used for chitosan blend formulation. The use of CO2 for chitosan dissolution made the scaffold preparation process more reproducible and economically sustainable. Genipin was applied to stabilize the structure of the scaffolds and those crosslinked at a level of 7.3% exhibited a homogenous porous structure (33.1%), high swelling capacity (27.6g/g for wound exudate like medium; 62.5 g/g for water), and were stable under cyclic compression. The values of other investigated parameters: dissolution degree (30%), lysozyme-induced degradation (5% after 168 h), good antioxidant properties (DPPH, ABTS, Fe(2+) assays) and especially very low in vitro cytotoxicity against fibroblasts (103%, MTT assay), were highly advantageous for possible biomedical applications of the novel materials.


Journal of Veterinary Medical Science | 2014

Antibiotic Resistance in Staphylococcus aureus Strains Isolated from Cows with Mastitis in Eastern Poland and Analysis of Susceptibility of Resistant Strains to Alternative Nonantibiotic Agents: Lysostaphin, Nisin and Polymyxin B

Piotr Szweda; Marta Schielmann; Aneta Frankowska; Barbara Kot; Magdalena Zalewska

ABSTRACT The aim of this study was to analyze the resistance of Staphylococcus aureus isolates from bovine mastitis in the eastern part of Poland to a set of 20 antibiotics and three alternative agents: lysostaphin, nisin and polymyxin B. Eighty-six out of 123 examined isolates were susceptible to all 20 tested antibiotics (70%). The highest percentage of resistance was observed in the case of β-lactam antibiotics: amoxicillin (n=22, 17.9%), ampicillin (n=28, 22.8%), penicillin (n=29, 23.6%) and streptomycin (n=13; 10.6%). Twenty-five of the penicillin-resistant strains were found to carry the blaZ gene coding for β-lactamases. Two strains were found to be mecA positive and a few strains were classified as multidrug resistant (MDR), one of them was simultaneously resistant to six antibiotics. All strains, resistant to at least one antibiotic (n=37) and two control strains, were susceptible to lysostaphin with MIC values of 0.008–0.5 µg/ml (susceptibility breakpoint 32 µg/ml). Twenty-one (54%) isolates were susceptible to nisin. The MIC value of this agent for 17 (44%) strains was 51.2 µg/ml and was not much higher than the susceptibility breakpoint value (32 µg/ml). Polymyxin B was able to inhibit the growth of the strains only at a high concentration (32–128 µg/ml). The presented results confirmed the observed worldwide problem of spreading antibiotic resistance among staphylococci isolated from bovine mastitis; on the other hand, we have indicated a high level of bactericidal activity of nisin and especially lysostaphin.


Molecular Biotechnology | 2004

Cloning of the thermostable α-amylase gene from Pyrococcus woesei in Escherichia coli

Beata Grzybowska; Piotr Szweda; Józef Synowiecki

Pyrococcus woesei (DSM 3773) α-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)α-amyl and pYTB2α-amyl vectors obtained were used for expression of thermostable α-amylase or fusion of α-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of α-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation—they exhibit only 35% of total cell activity—and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable α-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75°C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95°C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90°C and 110°C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120°C. Maltose was the main end product of starch hydrolysis catalyzed by this α-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.


Letters in Applied Microbiology | 2016

Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters

Piotr Marek Kuś; Piotr Szweda; Igor Jerković; Carlo Ignazio Giovanni Tuberoso

The use of honey as an antimicrobial agent gains importance due to often ineffectiveness of conventional treatment. However, activity of honey depends mainly on its botanical and geographical origin. To date, antimicrobial potential of Polish honeys has not yet been entirely investigated. In this study, 37 unifloral samples of 14 honey types (including rare varieties) from Poland were analysed and compared with manuka honey. The most active were cornflower, thyme and buckwheat honeys. Their MICs ranged from 3·12 to 25·00%, (depending on tested micro‐organism) and often were lower than for manuka honey. Additionally, colour, antioxidant activity, total phenols, pH and conductivity were assessed and significant correlations (P < 0·05) of MICs with several parameters were found. The most active were darker honeys, with strong yellow colour component, rich in phenolics, with high conductivity and water content. The honey antibacterial properties depended mainly on peroxide mechanism and were vulnerable to excessive heating, but quite stable during storage in cold. A number of honey samples showed potential as effective antimicrobial agents. The observed correlations of MICs and physical–chemical parameters help to understand better the factors impacting the antibacterial activity.


Journal of Dairy Research | 2016

Virulence gene profiles in Staphylococcus aureus isolated from cows with subclinical mastitis in eastern Poland.

Barbara Kot; Piotr Szweda; Aneta Frankowska-Maciejewska; Małgorzata Piechota; Katarzyna Wolska

Staphylococcus aureus is arguably the most important pathogen involved in bovine mastitis. The aim of this study was to determine the virulence gene profiles of 124 Staph. aureus isolates from subclinical mastitis in cows in eastern Poland. The presence of 30 virulence genes encoding adhesins, proteases and superantigenic toxins was investigated by PCR. The 17 different combinations of adhesin genes were identified. Occurrence of eno (91·1%) and fib (82·3%) genes was found to be common. The frequency of other adhesion genes fnbA, fnbB, ebps were 14·5, 50, 25%, respectively, and for cna and bbp were 1·6%. The etA and etD genes, encoding exfoliative toxins, were present in genomes of 5·6 and 8·9% isolates, respectively. The splA and sspA, encoding serine protease, were detected in above 90% isolates. The most frequent enterotoxin genes were sei (21%), sem (19·4%), sen (19·4%), seg (18·5%) and seo (13·7%). The tst gene was harboured by 2·4% isolates. The 19 combinations of the superantigenic toxin genes were obtained and found in 35·5% of isolates. Three of them (seg, sei, sem, sen, seo; sec, seg, sei, sem, sen, seo and seg, sei, sem, sen) were the most frequent and found in 16·1% of the isolates. The most common virulotype, present in 17·7% of the isolates, was fib, eno, fnbB, splA, splE, sspA. The results indicate the variation in the presence of virulence genes in Staph. aureus isolates and considerable diversity of isolates that are able to cause mastitis in cows.


Journal of Medical Microbiology | 2015

Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland.

Piotr Szweda; Katarzyna Gucwa; Ewa Romanowska; Katarzyna Dzierz˙anowska-Fangrat; Łukasz Naumiuk; Anna Brillowska-Da˛browska; Iwona Wojciechowska-Koszko; Sławomir Milewski

Candida glabrata is currently ranked as the second most frequently isolated aetiological agent of human fungal infections, next only to Candida albicans. In comparison with C. albicans, C. glabrata shows lower susceptibility to azoles, the most common agents used in treatment of fungal infections. Interestingly, the mechanisms of resistance to azole agents in C. albicans have been much better investigated than those in C. glabrata. The aim of the presented study was to determine the mechanisms of resistance to azoles in 81 C. glabrata clinical isolates from three different hospitals in Poland. The investigation was carried out with a Sensititre Yeast One test and revealed that 18 strains were resistant to fluconazole, and 15 were cross-resistant to all other azoles tested (voriconazole, posaconazole and itraconazole). One isolate resistant to fluconazole was cross-resistant to voriconazole, and resistance to voriconazole only was observed in six other isolates. All strains were found to be susceptible to echinocandins and amphotericin B, and five were classified as resistant to 5-fluorocytosine. The sequence of the ERG11 gene encoding lanosterol 14-α demethylase (the molecular target of azoles) of 41 isolates, including all strains resistant to fluconazole and three resistant only to voriconazole, was determined, and no amino acid substitutions were found. Real-time PCR studies revealed that 13 of 15 azole-resistant strains showed upregulation of the CDR1 gene encoding the efflux pump. No upregulation of expression of the CDR2 or ERG11 gene was observed.


Archive | 2012

Genotyping Techniques for Determining the Diversity of Microorganisms

Katarzyna Wolska; Piotr Szweda

Typing of microbial pathogens, or identifying bacteria at the strain level, is particularly important for diagnosis, treatment, and epidemiological surveillance of bacterial infections. This is especially the case for bacteria exhibiting high levels of antibiotic resistance or virulence, and those involved in nosocomial or pandemic infections. Strain typing also has applications in studying bacterial population dynamics. The part that molecular methods have to play in elucidating bacterial diversity is increasingly important. The shortcomings of phenotypically based typing methods (generally these methods are viewed as being too time consuming and lacking in sufficient resolution amongst related strains) have led to the development of many DNA – based techniques. A suitable typing method must have high discrimination power combined with good to moderate interand intra-laboratory reproducibility. In addition, it should be easy to set up, to use and to interpret, and inexpensive (Olive & Bean, 1999). In this chapter, we review the current bacterial genotyping methods and classify them into six main categories: (1 and 2) DNA banding pattern-based methods, which classify bacteria according to the size of fragments generated respectively by enzymatic digestion of genomic/plasmid DNA, and PCR amplification, (3) DNA hybridization–based methods using nucleotidic probes, (4) DNA sequencing-based methods, which study the polymorphism of DNA sequences, (5) differentiation of isolates on the basis of presence or absence of particular genes and (6) high resolution melting analysis–real–time monitoring of melting process of PCR amplified polymorphic DNA fragment. We described and compared the applications of genotyping methods to the study of bacterial strain diversity. We also discussed the selection of appropriate genotyping methods and the challenges of bacterial strain typing and described the current trends of genotyping methods.


Journal of Applied Microbiology | 2014

Chitosan–protein scaffolds loaded with lysostaphin as potential antistaphylococcal wound dressing materials

Piotr Szweda; Grzegorz Gorczyca; Robert Tylingo; Julianna Kurlenda; J. Kwieciński; Sławomir Milewski

The development of technology for preparing chitosan–protein scaffolds loaded with lysostaphin, which potentially could be used as dressing for wound treatment and soft tissue infections caused by Staphylococcus aureus.


Preparative Biochemistry & Biotechnology | 2014

EFFICIENT PRODUCTION OF Staphylococcus simulans LYSOSTAPHIN IN A BENCHTOP BIOREACTOR BY RECOMBINANT Escherichia coli

Piotr Szweda; Grzegorz Gorczyca; Paweł Filipkowski; Magdalena Zalewska; Sławomir Milewski

Lysostaphin is an enzyme with bactericidal activity against Staphylococcus aureus and other staphylococcal species. In spite of many advantages and promising results of preliminary research, the enzyme is still not widely used in medicine, veterinary medicine, or as a food preservative. One of the most important factors limiting application of the enzyme in clinical or technological practice is the high cost of its production. In this study we have determined the optimal conditions for lysostaphin production in a 5-L batch bioreactor. The enzyme production was based on a heterologous, Escherichia coli expression system designated as pBAD2Lys and constructed earlier in our laboratory. An evident influence of physicochemical conditions of the process (areation, pH and temperature) and composition of the growing media on the amount and activity of produced enzyme was noticed. Efficiency of production of about 13,000 U/L has been achieved in the optimal conditions of the production process: low aeration (400 rpm of mechanical stirrer), pH 6, and temperature 37°C in classical LB medium. Further, about twofold improvement in the production efficiency of the enzyme was achieved as a result of modification of composition of growing media. Finally, more than 80,000 units of lysostaphin were obtained from one (batch) bioreactor with 3 L of culture of E. coli TOP10F’ transformed with pBAD2Lys plasmid. To the best of our knowledge, this is the most efficient method of production of recombinant lysostaphin in E. coli expression systems described to date.

Collaboration


Dive into the Piotr Szweda's collaboration.

Top Co-Authors

Avatar

Sławomir Milewski

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Grzegorz Gorczyca

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Gucwa

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Tylingo

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Magdalena Zalewska

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Roman Kotłowski

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Wolska

University of Natural Sciences and Humanities in Siedlce

View shared research outputs
Top Co-Authors

Avatar

Marta Schielmann

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Maria Sadowska

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Piotr Marek Kuś

Wrocław Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge