Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pippa A. Thomson is active.

Publication


Featured researches published by Pippa A. Thomson.


Science | 2005

DISC1 and PDE4B Are Interacting Genetic Factors in Schizophrenia That Regulate cAMP Signaling

J. Kirsty Millar; Benjamin S. Pickard; Shaun Mackie; Rachel James; Sheila Christie; Sebastienne R. Buchanan; M. Pat Malloy; Jennifer E. Chubb; Elaine Huston; George S. Baillie; Pippa A. Thomson; Elaine V. Hill; Nicholas J. Brandon; Jean-Christophe Rain; L. Miguel Camargo; Paul J. Whiting; Miles D. Houslay; Douglas Blackwood; Walter J. Muir; David J. Porteous

The disrupted in schizophrenia 1 (DISC1) gene is a candidate susceptibility factor for schizophrenia, but its mechanistic role in the disorder is unknown. Here we report that the gene encoding phosphodiesterase 4B (PDE4B) is disrupted by a balanced translocation in a subject diagnosed with schizophrenia and a relative with chronic psychiatric illness. The PDEs inactivate adenosine 3′,5′-monophosphate (cAMP), a second messenger implicated in learning, memory, and mood. We show that DISC1 interacts with the UCR2 domain of PDE4B and that elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and an increase in PDE4B activity. We propose a mechanistic model whereby DISC1 sequesters PDE4B in resting cells and releases it in an activated state in response to elevated cAMP.


Molecular Psychiatry | 2005

Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population

Pippa A. Thomson; Naomi R. Wray; J. K. Millar; Kathryn L. Evans; S. Le Hellard; A. Condie; Walter J. Muir; Douglas Blackwood; David J. Porteous

The Translin-associated factor X/Disrupted in Schizophrenia 1 (TRAX/DISC) region was first implicated as a susceptibility locus for schizophrenia by analysis of a large Scottish family in which a t(1;11) translocation cosegregates with schizophrenia, bipolar disorder and recurrent major depression. We now report evidence for association between bipolar disorder and schizophrenia and this locus in the general Scottish population. A systematic study of linkage disequilibrium in a representative sample of the Scottish population was undertaken across the 510 kb of TRAX and DISC1. SNPs representing each haplotype block were selected for case–control association studies of both schizophrenia and bipolar disorder. Significant association with bipolar disorder in women P=0.00026 (P=0.0016 in men and women combined) was detected in a region of DISC1. This same region also showed nominally significant association with schizophrenia in both men and women combined, P=0.0056. Two further regions, one in TRAX and the second in DISC1, showed weaker evidence for sex-specific associations of individual haplotypes with bipolar disorder in men and women respectively, P<0.01. Only the association between bipolar women and DISC1 remained significant after correction for multiple testing. This result provides further supporting evidence for DISC1 as a susceptibility factor for both bipolar disorder and schizophrenia, consistent with the diagnoses in the original Scottish translocation family.The Translin-associated factor X/Disrupted in Schizophrenia 1 (TRAX/DISC) region was first implicated as a susceptibility locus for schizophrenia by analysis of a large Scottish family in which a t(1;11) translocation cosegregates with schizophrenia, bipolar disorder and recurrent major depression. We now report evidence for association between bipolar disorder and schizophrenia and this locus in the general Scottish population. A systematic study of linkage disequilibrium in a representative sample of the Scottish population was undertaken across the 510 kb of TRAX and DISC1. SNPs representing each haplotype block were selected for case–control association studies of both schizophrenia and bipolar disorder. Significant association with bipolar disorder in women P=0.00026 (P=0.0016 in men and women combined) was detected in a region of DISC1. This same region also showed nominally significant association with schizophrenia in both men and women combined, P=0.0056. Two further regions, one in TRAX and the second in DISC1, showed weaker evidence for sex-specific associations of individual haplotypes with bipolar disorder in men and women respectively, P<0.01. Only the association between bipolar women and DISC1 remained significant after correction for multiple testing. This result provides further supporting evidence for DISC1 as a susceptibility factor for both bipolar disorder and schizophrenia, consistent with the diagnoses in the original Scottish translocation family.


Molecular Psychiatry | 2006

Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder

Benjamin S. Pickard; M. P. Malloy; Andrea Christoforou; Pippa A. Thomson; Kathryn L. Evans; Stewart W. Morris; M. Hampson; David J. Porteous; Douglas Blackwood; Walter J. Muir

In the search for the biological causes of schizophrenia and bipolar disorder, glutamate neurotransmission has emerged as one of a number of candidate processes and pathways where underlying gene deficits may be present. The analysis of chromosomal rearrangements in individuals diagnosed with neuropsychiatric disorders is an established route to candidate gene identification in both Mendelian and complex disorders. Here we describe a set of genes disrupted by, or proximal to, chromosomal breakpoints (2p12, 2q31.3, 2q21.2, 11q23.3 and 11q24.2) in a patient where chronic schizophrenia coexists with mild learning disability (US: mental retardation). Of these disrupted genes, the most promising candidate is a member of the kainate-type ionotropic glutamate receptor family, GRIK4 (KA1). A subsequent systematic case–control association study on GRIK4 assessed its contribution to psychiatric illness in the karyotypically normal population. This identified two discrete regions of disease risk within the GRIK4 locus: three single single nucleotide polymorphism (SNP) markers with a corresponding underlying haplotype associated with susceptibility to schizophrenia (P=0.0005, odds ratio (OR) of 1.453, 95% CI 1.182–1.787) and two single SNP markers and a haplotype associated with a protective effect against bipolar disorder (P=0.0002, OR of 0.624, 95% CI 0.485–0.802). After permutation analysis to correct for multiple testing, schizophrenia and bipolar disorder haplotypes remained significant (P=0.0430, s.e. 0.0064 and P=0.0190, s.e. 0.0043, respectively). We propose that these convergent cytogenetic and genetic findings provide molecular evidence for common aetiologies for different psychiatric conditions and further support the ‘glutamate hypothesis’ of psychotic illness.


Neurotoxicity Research | 2007

Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? Evidence from DISC1, GRIK4 and NRG1.

Douglas Blackwood; Ben J. Pickard; Pippa A. Thomson; Kathryn L. Evans; David J. Porteous; Walter J. Muir

Depression is common in patients with schizophrenia and it is well established from family studies that rates of depression are increased among relatives of probands with schizophrenia, making it likely that the phenotypes described under the categories of affective and non-affective psychoses share some genetic risk factors. Family linkage studies have identified several chromosomal regions likely to contain risk genes for schizophrenia and bipolar disorder, suggesting common susceptibility loci. Candidate gene association studies have provided further evidence to suggest that some genes including two of the most studied candidates, Disrupted in Schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1) may be involved in both types of psychosis. We have recently identified another strong candidate for a role in both schizophrenia and affective disorders,GRIK4 a glutamate receptor mapped to chromosome 11q23 [Glutamate Receptor, Ionotropic, Kainate, type 4]. This gene is disrupted by a translocation breakpoint in a patient with schizophrenia, and case control studies show significant association ofGRIK4 with both schizophrenia and bipolar disorder. Identifying genes implicated in the psychoses may eventually provide the basis for classification based on biology rather than symptoms, and suggest novel treatment strategies for these complex brain disorders.


Annals of Medicine | 2004

DISC1 and DISC2: discovering and dissecting molecular mechanisms underlying psychiatric illness

J. Kirsty Millar; Rachel James; Nicholas J. Brandon; Pippa A. Thomson

A balanced (1;11)(q42;q14) translocation co‐segregates with schizophrenia and major affective disorders in a large Scottish family. The translocation breakpoint on chromosome 1 is located within the Disrupted in Schizophrenia 1 and 2 genes (DISC1 and DISC2). Consequently loss of normal function of these genes is likely to underlie the susceptibility to developing psychiatric disorders that is conferred by inheritance of the translocation. Additionally, a number of independent genetic studies highlight the region of chromosome 1q containing DISC1 and DISC2 as a likely susceptibility locus for both schizophrenia and affective disorders. These genes are thus implicated in the aetiology of major psychiatric disorders in several populations. Although the function of DISC1 was initially unknown, several recent reports have made significant progress towards understanding its role in the central nervous system. Intriguingly, all data obtained to date point towards an involvement in processes critical to neurodevelopment and function. DISC2 has not been studied in detail, but is likely to modulate DISC1 expression. Overall, it is clear from the combination of genetic and functional data that DISC1 and/or DISC2 are emerging as important factors in the molecular genetics of psychiatric illness.


Frontiers of Biology in China | 2013

DISC1 genetics, biology and psychiatric illness

Pippa A. Thomson; Elise L.V. Malavasi; Ellen Grünewald; Dinesh C. Soares; Malgorzata Borkowska; J. Kirsty Millar

Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points toward DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.


Biological Psychiatry | 2017

Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium

Robert A. Power; Katherine E. Tansey; Henriette N. Buttenschøn; Sarah Cohen-Woods; Tim B. Bigdeli; Lynsey S. Hall; Zoltán Kutalik; S. Hong Lee; Stephan Ripke; Stacy Steinberg; Alexander Teumer; Alexander Viktorin; Naomi R. Wray; Volker Arolt; Bernard T. Baune; Dorret I. Boomsma; Anders D. Børglum; Enda M. Byrne; Enrique Castelao; Nicholas John Craddock; Ian Craig; Udo Dannlowski; Ian J. Deary; Franziska Degenhardt; Andreas J. Forstner; Scott D. Gordon; Hans J. Grabe; Jakob Grove; Steven P. Hamilton; Caroline Hayward

Background Major depressive disorder (MDD) is a disabling mood disorder, and despite a known heritable component, a large meta-analysis of genome-wide association studies revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age at onset in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by age at onset. Methods Discovery case-control genome-wide association studies were performed where cases were stratified using increasing/decreasing age-at-onset cutoffs; significant single nucleotide polymorphisms were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 control subjects for subsetting. Polygenic score analysis was used to examine whether differences in shared genetic risk exists between earlier and adult-onset MDD with commonly comorbid disorders of schizophrenia, bipolar disorder, Alzheimer’s disease, and coronary artery disease. Results We identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, odds ratio: 1.16, 95% confidence interval: 1.11–1.21, p = 5.2 × 10-11). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset MDD. Conclusions We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder.


Molecular Psychiatry | 2016

Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population

T-K Clarke; Michelle K. Lupton; Ana Maria Fernandez-Pujals; John M. Starr; Gail Davies; Simon R. Cox; Alison Pattie; David C. Liewald; Lynsey S. Hall; Donald J. MacIntyre; Blair H. Smith; Lynne J. Hocking; Sandosh Padmanabhan; Pippa A. Thomson; C. Hayward; Narelle K. Hansell; Grant W. Montgomery; Sarah E. Medland; Nicholas G. Martin; Margaret J. Wright; David J. Porteous; Ian J. Deary; Andrew M. McIntosh

Cognitive impairment is common among individuals diagnosed with autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). It has been suggested that some aspects of intelligence are preserved or even superior in people with ASD compared with controls, but consistent evidence is lacking. Few studies have examined the genetic overlap between cognitive ability and ASD/ADHD. The aim of this study was to examine the polygenic overlap between ASD/ADHD and cognitive ability in individuals from the general population. Polygenic risk for ADHD and ASD was calculated from genome-wide association studies of ASD and ADHD conducted by the Psychiatric Genetics Consortium. Risk scores were created in three independent cohorts: Generation Scotland Scottish Family Health Study (GS:SFHS) (n=9863), the Lothian Birth Cohorts 1936 and 1921 (n=1522), and the Brisbane Adolescent Twin Sample (BATS) (n=921). We report that polygenic risk for ASD is positively correlated with general cognitive ability (beta=0.07, P=6 × 10−7, r2=0.003), logical memory and verbal intelligence in GS:SFHS. This was replicated in BATS as a positive association with full-scale intelligent quotient (IQ) (beta=0.07, P=0.03, r2=0.005). We did not find consistent evidence that polygenic risk for ADHD was associated with cognitive function; however, a negative correlation with IQ at age 11 years (beta=−0.08, Z=−3.3, P=0.001) was observed in the Lothian Birth Cohorts. These findings are in individuals from the general population, suggesting that the relationship between genetic risk for ASD and intelligence is partly independent of clinical state. These data suggest that common genetic variation relevant for ASD influences general cognitive ability.


Molecular Psychiatry | 2014

DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan

David J. Porteous; Pippa A. Thomson; J. K. Millar; Kathryn L. Evans; William Hennah; Dinesh C. Soares; Shane McCarthy; W R McCombie; S. J. Clapcote; Carsten Korth; Nicholas J. Brandon; Akira Sawa; Atsushi Kamiya; J. C. Roder; Stephen M. Lawrie; Andrew M. McIntosh; D. St Clair; D. H. Blackwood

DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan


Neurology | 2015

Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease

Kristiina Rannikmae; Gail Davies; Pippa A. Thomson; Steve Bevan; William J. Devan; Guido J. Falcone; Matthew Traylor; Christopher D. Anderson; Thomas W Battey; Farid Radmanesh; Ranjan Deka; Jessica G. Woo; Lisa J. Martin; Jordi Jimenez-Conde; Magdy Selim; Devin L. Brown; Scott Silliman; Chelsea S. Kidwell; Joan Montaner; Carl D. Langefeld; Agnieszka Slowik; Björn M. Hansen; Arne Lindgren; James F. Meschia; Myriam Fornage; Joshua C. Bis; Stéphanie Debette; Mohammad Arfan Ikram; Will Longstreth; Reinhold Schmidt

Objectives: We hypothesized that common variants in the collagen genes COL4A1/COL4A2 are associated with sporadic forms of cerebral small vessel disease. Methods: We conducted meta-analyses of existing genotype data among individuals of European ancestry to determine associations of 1,070 common single nucleotide polymorphisms (SNPs) in the COL4A1/COL4A2 genomic region with the following: intracerebral hemorrhage and its subtypes (deep, lobar) (1,545 cases, 1,485 controls); ischemic stroke and its subtypes (cardioembolic, large vessel disease, lacunar) (12,389 cases, 62,004 controls); and white matter hyperintensities (2,733 individuals with ischemic stroke and 9,361 from population-based cohorts with brain MRI data). We calculated a statistical significance threshold that accounted for multiple testing and linkage disequilibrium between SNPs (p < 0.000084). Results: Three intronic SNPs in COL4A2 were significantly associated with deep intracerebral hemorrhage (lead SNP odds ratio [OR] 1.29, 95% confidence interval [CI] 1.14–1.46, p = 0.00003; r2 > 0.9 between SNPs). Although SNPs associated with deep intracerebral hemorrhage did not reach our significance threshold for association with lacunar ischemic stroke (lead SNP OR 1.10, 95% CI 1.03–1.18, p = 0.0073), and with white matter hyperintensity volume in symptomatic ischemic stroke patients (lead SNP OR 1.07, 95% CI 1.01–1.13, p = 0.016), the direction of association was the same. There was no convincing evidence of association with white matter hyperintensities in population-based studies or with non–small vessel disease cerebrovascular phenotypes. Conclusions: Our results indicate an association between common variation in the COL4A2 gene and symptomatic small vessel disease, particularly deep intracerebral hemorrhage. These findings merit replication studies, including in ethnic groups of non-European ancestry.

Collaboration


Dive into the Pippa A. Thomson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian J. Deary

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi R. Wray

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge