Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Plamen Angelov is active.

Publication


Featured researches published by Plamen Angelov.


systems man and cybernetics | 2004

An approach to online identification of Takagi-Sugeno fuzzy models

Plamen Angelov; Dimitar Filev

An approach to the online learning of Takagi-Sugeno (TS) type models is proposed in the paper. It is based on a novel learning algorithm that recursively updates TS model structure and parameters by combining supervised and unsupervised learning. The rule-base and parameters of the TS model continually evolve by adding new rules with more summarization power and by modifying existing rules and parameters. In this way, the rule-base structure is inherited and up-dated when new data become available. By applying this learning concept to the TS model we arrive at a new type adaptive model called the Evolving Takagi-Sugeno model (ETS). The adaptive nature of these evolving TS models in combination with the highly transparent and compact form of fuzzy rules makes them a promising candidate for online modeling and control of complex processes, competitive to neural networks. The approach has been tested on data from an air-conditioning installation serving a real building. The results illustrate the viability and efficiency of the approach. The proposed concept, however, has significantly wider implications in a number of fields, including adaptive nonlinear control, fault detection and diagnostics, performance analysis, forecasting, knowledge extraction, robotics, behavior modeling.


IEEE Transactions on Fuzzy Systems | 2008

Evolving Fuzzy-Rule-Based Classifiers From Data Streams

Plamen Angelov; Xiaowei Zhou

A new approach to the online classification of streaming data is introduced in this paper. It is based on a self-developing (evolving) fuzzy-rule-based (FRB) classifier system of Takagi-Sugeno ( eTS) type. The proposed approach, called eClass (evolving class ifier), includes different architectures and online learning methods. The family of alternative architectures includes: 1) eClass0, with the classifier consequents representing class label and 2) the newly proposed method for regression over the features using a first-order eTS fuzzy classifier, eClass1. An important property of eClass is that it can start learning ldquofrom scratch.rdquo Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for eClass (the number may grow, with new class labels being added by the online learning process). In the event that an initial FRB exists, eClass can evolve/develop it further based on the newly arrived data. The proposed approach addresses the practical problems of the classification of streaming data (video, speech, sensory data generated from robotic, advanced industrial applications, financial and retail chain transactions, intruder detection, etc.). It has been successfully tested on a number of benchmark problems as well as on data from an intrusion detection data stream to produce a comparison with the established approaches. The results demonstrate that a flexible (with evolving structure) FRB classifier can be generated online from streaming data achieving high classification rates and using limited computational resources.


Archive | 2010

Evolving Intelligent Systems: Methodology and Applications

Plamen Angelov; Dimitar Filev; Nikola Kasabov

From theory to techniques, the first all-in-one resource for EIS There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications. Explains the following fundamental approaches for developing evolving intelligent systems (EIS): the Hierarchical Prioritized Structure the Participatory Learning Paradigm the Evolving Takagi-Sugeno fuzzy systems (eTS+) the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm Emphasizes the importance and increased interest in online processing of data streams Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems Introduces an integrated approach to incremental (real-time) feature extraction and classification Proposes a study on the stability of evolving neuro-fuzzy recurrent networks Details methodologies for evolving clustering and classification Reveals different applications of EIS to address real problems in areas of: evolving inferential sensors in chemical and petrochemical industry learning and recognition in robotics Features downloadable software resources Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.


Fuzzy Sets and Systems | 2008

Evolving fuzzy classifiers using different model architectures

Plamen Angelov; Edwin Lughofer; Xiaowei Zhou

In this paper we present two novel approaches for on-line evolving fuzzy classifiers, called eClass and FLEXFIS-Class. Both methods can be applied with different model architectures, including single model (SM) with class labels as consequents, classification hyper-planes as consequents, and multi-model (MM) architecture. Additionally, eClass can have a multi-input-multi-output (MIMO) architecture with multiple hyper-planes as consequents of each fuzzy rule. The difference between MM and MIMO architectures is that the former one applies one separate and independent fuzzy rule-based (FRB) classifier for each class and is using an indicator labelling scheme, while the latter one applies a single FRB where the rules are MIMO rather than MISO. Both, eClass and FLEXFIS-Class methods are designed to work on a per-sample basis and are thus one-pass, incremental. Additionally, their structure (FRB) is evolving rather than fixed. It adapts their parameters in antecedent and consequent parts with any newly loaded sample. A special emphasis is placed on advanced issues for improving accuracy and robustness, including a thorough comparison between global and local learning of consequent functions, a novel approach for detecting of and reacting on drifts in the data streams and an enhanced outlier treatment strategy. The methods and their extensions according to the advanced issues are evaluated on one benchmark problem of handwritten images recognition as well as on a real-life problem of image classification framework, where images should be classified into good and bad ones during an on-line and interactive production process.


ieee international conference on fuzzy systems | 2005

Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models

Plamen Angelov; Dimitar Filev

This paper deals with a simplified version of the evolving Takagi-Sugeno (eTS) learning algorithm - a computationally efficient procedure for on-line learning TS type fuzzy models. It combines the concept of the scatter as a measure of data density and summarization ability of the TS rules, the use of Cauchy type antecedent membership functions, an aging indicator characterizing the stationarity of the rules, and a recursive least square algorithm to dynamically learn the structure and parameters of the eTS model


Analyst | 2012

Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives

Júlio Trevisan; Plamen Angelov; Paul L. Carmichael; Andrew D. Scott; Francis L. Martin

Applying Fourier-transform infrared (FTIR) spectroscopy (or related technologies such as Raman spectroscopy) to biological questions (defined as biospectroscopy) is relatively novel. Potential fields of application include cytological, histological and microbial studies. This potentially provides a rapid and non-destructive approach to clinical diagnosis. Its increase in application is primarily a consequence of developing instrumentation along with computational techniques. In the coming decades, biospectroscopy is likely to become a common tool in the screening or diagnostic laboratory, or even in the general practitioners clinic. Despite many advances in the biological application of FTIR spectroscopy, there remain challenges in sample preparation, instrumentation and data handling. We focus on the latter, where we identify in the reviewed literature, the existence of four main study goals: Pattern Finding; Biomarker Identification; Imaging; and, Diagnosis. These can be grouped into two frameworks: Exploratory; and, Diagnostic. Existing techniques in Quality Control, Pre-processing, Feature Extraction, Clustering, and Classification are critically reviewed. An aspect that is often visited is that of method choice. Based on the state-of-art, we claim that in the near future research should be focused on the challenges of dataset standardization; building information systems; development and validation of data analysis tools; and, technology transfer. A diagnostic case study using a real-world dataset is presented as an illustration. Many of the methods presented in this review are Machine Learning and Statistical techniques that are extendable to other forms of computer-based biomedical analysis, including mass spectrometry and magnetic resonance.


International Journal of Approximate Reasoning | 2004

An approach for fuzzy rule-base adaptation using on-line clustering

Plamen Angelov

A recursive approach for adaptation of fuzzy rule-based model structure has been developed and tested. It uses on-line clustering of the input–output data with a recursively calculated spatial proximity measure. Centres of these clusters are then used as prototypes of the centres of the fuzzy rules (as their focal points). The recursive nature of the algorithm makes possible to design an evolving fuzzy rule-base in on-line mode, which adapts to the variations of the data pattern. The proposed algorithm is instrumental for on-line identification of Takagi–Sugeno models, exploiting their dual nature and combined with the recursive modified weighted least squares estimation of the parameters of the consequent part of the model. The resulting evolving fuzzy rule-based models have high degree of transparency, compact form, and computational efficiency. This makes them strongly competitive candidates for on-line modelling, estimation and control in comparison with the neural networks, polynomial and regression models. The approach has been tested with data from a fermentation process of lactose oxidation. (c) 2003 Elsevier Inc. All rights reserved.


IEEE Transactions on Neural Networks | 2014

PANFIS: A Novel Incremental Learning Machine

Mahardhika Pratama; Sreenatha G. Anavatti; Plamen Angelov; Edwin Lughofer

Most of the dynamics in real-world systems are compiled by shifts and drifts, which are uneasy to be overcome by omnipresent neuro-fuzzy systems. Nonetheless, learning in nonstationary environment entails a system owning high degree of flexibility capable of assembling its rule base autonomously according to the degree of nonlinearity contained in the system. In practice, the rule growing and pruning are carried out merely benefiting from a small snapshot of the complete training data to truncate the computational load and memory demand to the low level. An exposure of a novel algorithm, namely parsimonious network based on fuzzy inference system (PANFIS), is to this end presented herein. PANFIS can commence its learning process from scratch with an empty rule base. The fuzzy rules can be stitched up and expelled by virtue of statistical contributions of the fuzzy rules and injected datum afterward. Identical fuzzy sets may be alluded and blended to be one fuzzy set as a pursuit of a transparent rule base escalating humans interpretability. The learning and modeling performances of the proposed PANFIS are numerically validated using several benchmark problems from real-world or synthetic datasets. The validation includes comparisons with state-of-the-art evolving neuro-fuzzy methods and showcases that our new method can compete and in some cases even outperform these approaches in terms of predictive fidelity and model complexity.


Applied Soft Computing | 2011

Handling drifts and shifts in on-line data streams with evolving fuzzy systems

Edwin Lughofer; Plamen Angelov

In this paper, we present new approaches to handling drift and shift in on-line data streams with the help of evolving fuzzy systems (EFS), which are characterized by the fact that their structure (rule base and parameters) is not fixed and not pre-determined, but is extracted from data streams on-line and in an incremental manner. When dealing with so-called drifts and s hifts in data streams, one needs to take into account (1) automatic detection of drifts and shifts and (2) automatic reaction to the drifts and shifts. This is important to avoid interruptions in the learning process and downtrends in predictive accuracy. To address the first problem, we propose an approach based on the concept fuzzy rule age. The second problem is addressed by including gradual forgetting of (1) antecedent parts and (2) consequent parameters. The latter can be achieved by including a forgetting factor in the recursive local learning process of the parameters, whose value is automatically extracted based on the intensity of the shift/drift. For addressing the former problem, we introduce two alternative methods: one is based on the evolving density-based clustering (eClustering) used to form the antecedents in the eTS approach; the other is based on the automatic adaptation of the learning rate of the evolving vector quantization (eVQ) method used to form the antecedent in the FLEXFIS approach. The paper concludes with an empirical evaluation of the impact of the proposed approaches in (on-line) real-world data sets in which drifts and shifts occur.


Fuzzy Sets and Systems | 1997

Optimization in an intuitionistic fuzzy environment

Plamen Angelov

Abstract A new concept of the optimization problem under uncertainty is proposed and treated in the paper. It is an extension of fuzzy optimization in which the degrees of rejection of objective(s) and of constraints are considered together with the degrees of satisfaction. This approach is an application of the intuitionistic fuzzy (IF) set concept to optimization problems. An approach to solving such problems is proposed and illustrated with a simple numerical example. It converts the introduced intuitionistic fuzzy optimization (IFO) problem into the crisp (non-fuzzy) one. The advantage of the IFO problems is twofold: they give the richest apparatus for formulation of optimization problems and, on the other hand, the solution of IFO problems can satisfy the objective(s) with bigger degree than the analogous fuzzy optimization problem and the crisp one.

Collaboration


Dive into the Plamen Angelov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin Lughofer

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Rashmi Dutta Baruah

Indian Institute of Technology Guwahati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge