Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Po-Hsun Huang is active.

Publication


Featured researches published by Po-Hsun Huang.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Acoustic separation of circulating tumor cells

Peng Li; Zhangming Mao; Zhangli Peng; Lanlan Zhou; Yuchao Chen; Po-Hsun Huang; Cristina I. Truica; Joseph J. Drabick; Wafik S. El-Deiry; Ming Dao; S. Suresh; Tony Jun Huang

Significance The separation and analysis of circulating tumor cells (CTCs) provides physicians a minimally invasive way to monitor the response of cancer patients to various treatments. Among the existing cell-separation methods, acoustic-based approaches provide significant potential to preserve the phenotypic and genotypic characteristics of sorted cells, owing to their safe, label-free, and contactless nature. In this work, we report the development of an acoustic-based device that successfully demonstrates the isolation of rare CTCs from the clinical blood samples of cancer patients. Our work thus provides a unique means to obtain viable and undamaged CTCs, which can subsequently be cultured. The results presented here offer unique pathways for better cancer diagnosis, prognosis, therapy monitoring, and metastasis research. Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.


ACS Nano | 2013

Tunable nanowire patterning using standing surface acoustic waves.

Yuchao Chen; Xiaoyun Ding; Sz-Chin Steven Lin; Shikuan Yang; Po-Hsun Huang; Nitesh Nama; Yanhui Zhao; Ahmad Ahsan Nawaz; Feng Guo; Wei Wang; Yeyi Gu; Thomas E. Mallouk; Tony Jun Huang

Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 s. In this approach, SSAWs were generated by interdigital transducers, which induced a periodic alternating current (ac) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shaped nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications.


Lab on a Chip | 2013

An acoustofluidic micromixer based on oscillating sidewall sharp-edges

Po-Hsun Huang; Yuliang Xie; Daniel Ahmed; Joseph Rufo; Nitesh Nama; Yuchao Chen; Chung Yu Chan; Tony Jun Huang

Rapid and homogeneous mixing inside a microfluidic channel is demonstrated via the acoustic streaming phenomenon induced by the oscillation of sidewall sharp-edges. By optimizing the design of the sharp-edges, excellent mixing performance and fast mixing speed can be achieved in a simple device, making our sharp-edge-based acoustic micromixer a promising candidate for a wide variety of applications.


Lab on a Chip | 2014

Standing surface acoustic wave (SSAW)-based microfluidic cytometer

Yuchao Chen; Ahmad Ahsan Nawaz; Yanhui Zhao; Po-Hsun Huang; J. Phillip McCoy; Stewart J. Levine; Lin Wang; Tony Jun Huang

The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events s(-1) when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles.


Optics Express | 2008

Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing

Po-Hsun Huang; Tzu-Chien Huang; Yi-Ting Sun; S. Y. Yang

Large-area microlens arrays are becoming important components in many applications such as LCD-TV diffusers. This paper reports a uniform pressure, low temperature process for their fabrication. The process integrates gas-assisted embossing and UV-curing embossing. During the process, the 230mm x 203mm PMMA substrate is pressed against the stainless-steel stamper coated with UV-curable resin. Under the gas pressuring and UV irradiating, a large array of microlens can be formed. By using this process, high embossing temperature and high embossing pressure can be avoided. Little residual stress is observed in the embossed PMMA substrate. The uniformity of large-area fabrication and optical properties of fabricated resin microlens array have been verified. This study has successfully shown the potential of this gas-assisted UV embossing process for the replication of large-area microstructures.


ACS Nano | 2014

In Situ Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems

Yuliang Xie; Shikuan Yang; Zhangming Mao; Peng Li; Chenglong Zhao; Zane Cohick; Po-Hsun Huang; Tony Jun Huang

In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2 × 106 and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications.


Optics Express | 2008

Fast fabrication of integrated surface-relief and particle-diffusing plastic diffuser by use of a hybrid extrusion roller embossing process.

Tzu-Chien Huang; Jian-Ren Ciou; Po-Hsun Huang; Kuo-Huang Hsieh; S. Y. Yang

Most plastic diffusers are either of surface-relief or particle-diffusing types, based on different principles and fabrication methods. This paper reports an innovative extrusion roller embossing process, which enables the fabrication of diffusers with both surface-relief and particle-diffusing functions. An extruder with die is employed to fabricate the thin film of PC/bead composite; the roller micro-embossing process is used to replicate the microstructure onto the surface of PC composite film. A metallic roller mold with microstructures is fabricated using turning process. During the extrusion rolling embossing process, the extruded film of PC with diffusion beads is immediately pressed against the surface of the roller mold. Under the proper processing parameters, the plastic diffusers integrating surface-relief and particle-diffusing functions have been successfully fabricated. The shape, uniformity, and optical properties of fabricated diffuser have been verified. This method shows the great potential for continuous fabrication of high-performance plastic diffusers integrating surface-relief and particle-diffusing functions with high throughput.


Lab on a Chip | 2014

Investigation of acoustic streaming patterns around oscillating sharp edges

Nitesh Nama; Po-Hsun Huang; Tony Jun Huang; Francesco Costanzo

Oscillating sharp edges have been employed to achieve rapid and homogeneous mixing in microchannels using acoustic streaming. Here, we used a perturbation approach to study the flow around oscillating sharp edges in a microchannel. This work extends prior experimental studies to numerically characterize the effect of various parameters on the acoustically induced flow. Our numerical results match well with the experimental results. We investigated multiple device parameters such as the tip angle, oscillation amplitude, and channel dimensions. Our results indicate that, due to the inherent nonlinearity of acoustic streaming, the channel dimensions could significantly impact the flow patterns and device performance.


Journal of Materials Chemistry C | 2014

Superhydrophobic surface enhanced Raman scattering sensing using Janus particle arrays realized by site-specific electrochemical growth

Shikuan Yang; Patrick John Hricko; Po-Hsun Huang; Sixing Li; Yanhui Zhao; Yuliang Xie; Feng Guo; Lin Wang; Tony Jun Huang

Site-specific electrochemical deposition is used to prepare polystyrene (PS)-Ag Janus particle arrays with superhydrophobic properties. The analyte molecules can be significantly enriched using the superhydrophobic property of the PS-Ag Janus particle array before SERS detections, enabling an extremely sensitive detection of molecules in a highly diluted solution (e.g., femtomolar level). This superhydrophobic surface enhanced Raman scattering sensing concept described here is of critical significance in biosensing and bioanalysis. Most importantly, the site-specific electrochemical growth method we developed here is a versatile approach that can be used to prepare Janus particle arrays with different properties for various applications.


Journal of Micromechanics and Microengineering | 2008

Direct fabrication of rigid microstructures on a metallic roller using a dry film resist

Liang-Ting Jiang; Tzu-Chien Huang; Chih-Yuan Chang; Jian-Ren Ciou; S. Y. Yang; Po-Hsun Huang

This paper presents a novel method to fabricate a metallic roller mold with microstructures on its surface using a dry film resist (DFR). The DFR is laminated uniformly onto the curvy surface of a copper roller. After that, the micro-scale photoresist on the surface of the roller can be patterned by non-planar lithography using a flexible film photomask, followed by ferric chloride wet etching to obtain the desired microstructures. This method overcomes the uniformity issue of photoresist coating on rollers, and solves the molds sliding problem during the embossing process because the microstructures are fabricated directly on the roller surface. Furthermore, the rigid metallic roller mold has excellent strength durability and temperature endurance, which can be used in roller hot embossing with a high embossing pressure. The fabricated microstructure roller mold is used as a mold in the hybrid extrusion roller embossing process and successfully fabricates uniform micro-scale prominent line arrays on PC films. This result proves that the roller fabricated by this method can be successfully used in roller embossing for microstructure mass production. The excellent flatness of dry film resist laminating is the key in this fabrication process. The flexible film photomask can be easily designed using CAD software; this roller fabrication method enhances the design flexibility and reduces the cost and time.

Collaboration


Dive into the Po-Hsun Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuchao Chen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Nitesh Nama

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Peng Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yuliang Xie

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

S. Y. Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Zhangming Mao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Tzu-Chien Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Feng Guo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lin Wang

Ningbo University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge