Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Jun Huang is active.

Publication


Featured researches published by Tony Jun Huang.


Proceedings of the National Academy of Sciences of the United States of America | 2012

On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves

Xiaoyun Ding; Sz-Chin Steven Lin; Brian Kiraly; Hongjun Yue; Sixing Li; I-Kao Chiang; Jinjie Shi; Stephen J. Benkovic; Tony Jun Huang

Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based “acoustic tweezers” that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers’ compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.


Lab on a Chip | 2013

Surface acoustic wave microfluidics

Xiaoyun Ding; Peng Li; Sz-Chin Steven Lin; Zackary S. Stratton; Nitesh Nama; Feng Guo; Daniel J. Slotcavage; Xiaole Mao; Jinjie Shi; Francesco Costanzo; Tony Jun Huang

The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Acoustic separation of circulating tumor cells

Peng Li; Zhangming Mao; Zhangli Peng; Lanlan Zhou; Yuchao Chen; Po-Hsun Huang; Cristina I. Truica; Joseph J. Drabick; Wafik S. El-Deiry; Ming Dao; S. Suresh; Tony Jun Huang

Significance The separation and analysis of circulating tumor cells (CTCs) provides physicians a minimally invasive way to monitor the response of cancer patients to various treatments. Among the existing cell-separation methods, acoustic-based approaches provide significant potential to preserve the phenotypic and genotypic characteristics of sorted cells, owing to their safe, label-free, and contactless nature. In this work, we report the development of an acoustic-based device that successfully demonstrates the isolation of rare CTCs from the clinical blood samples of cancer patients. Our work thus provides a unique means to obtain viable and undamaged CTCs, which can subsequently be cultured. The results presented here offer unique pathways for better cancer diagnosis, prognosis, therapy monitoring, and metastasis research. Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.


ACS Nano | 2009

A Mechanical Actuator Driven Electrochemically by Artificial Molecular Muscles

Bala Krishna Juluri; Ajeet S. Kumar; Yi Liu; Tao Ye; Ying-Wei Yang; Amar H. Flood; Lei Fang; J. Fraser Stoddart; Paul S. Weiss; Tony Jun Huang

A microcantilever, coated with a monolayer of redox-controllable, bistable [3]rotaxane molecules (artificial molecular muscles), undergoes reversible deflections when subjected to alternating oxidizing and reducing electrochemical potentials. The microcantilever devices were prepared by precoating one surface with a gold film and allowing the palindromic [3]rotaxane molecules to adsorb selectively onto one side of the microcantilevers, utilizing thiol-gold chemistry. An electrochemical cell was employed in the experiments, and deflections were monitored both as a function of (i) the scan rate (< or =20 mV s(-1)) and (ii) the time for potential step experiments at oxidizing (>+0.4 V) and reducing (<+0.2 V) potentials. The different directions and magnitudes of the deflections for the microcantilevers, which were coated with artificial molecular muscles, were compared with (i) data from nominally bare microcantilevers precoated with gold and (ii) those coated with two types of control compounds, namely, dumbbell molecules to simulate the redox activity of the palindromic bistable [3]rotaxane molecules and inactive 1-dodecanethiol molecules. The comparisons demonstrate that the artificial molecular muscles are responsible for the deflections, which can be repeated over many cycles. The microcantilevers deflect in one direction following oxidation and in the opposite direction upon reduction. The approximately 550 nm deflections were calculated to be commensurate with forces per molecule of approximately 650 pN. The thermal relaxation that characterizes the devices deflection is consistent with the double bistability associated with the palindromic [3]rotaxane and reflects a metastable contracted state. The use of the cooperative forces generated by these self-assembled, nanometer-scale artificial molecular muscles that are electrically wired to an external power supply constitutes a seminal step toward molecular-machine-based nanoelectromechanical systems (NEMS).


Applied Physics Letters | 2004

A nanomechanical device based on linear molecular motors

Tony Jun Huang; Branden Brough; Chih Ming Ho; Yi Liu; Amar H. Flood; Paul A. Bonvallet; Hsian-Rong Tseng; J. Fraser Stoddart; Marko Baller; Sergei Magonov

An array of microcantilever beams, coated with a self-assembled monolayer of bistable, redox-controllable [3]rotaxane molecules, undergoes controllable and reversible bending when it is exposed to chemical oxidants and reductants. Conversely, beams that are coated with a redox-active but mechanically inert control compound do not display the same bending. A series of control experiments and rational assessments preclude the influence of heat, photothermal effects, and pH variation as potential mechanisms of beam bending. Along with a simple calculation from a force balance diagram, these observations support the hypothesis that the cumulative nanoscale movements within surface-bound “molecular muscles” can be harnessed to perform larger-scale mechanical work.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Cell separation using tilted-angle standing surface acoustic waves

Xiaoyun Ding; Zhangli Peng; Sz-Chin Steven Lin; Michela Geri; Sixing Li; Peng Li; Yuchao Chen; Ming Dao; S. Suresh; Tony Jun Huang

Significance We have developed a unique approach for the separation of particles and biological cells through standing surface acoustic waves oriented at an optimum angle to the fluid flow direction in a microfluidic device. This experimental setup, optimized by systematic analyses, has been used to demonstrate effective separation based on size, compressibility, and mechanical properties of particles and cells. The potential of this method for biological–biomedical applications was demonstrated through the example of isolating MCF-7 breast cancer cells from white blood cells. The method offers a possible route for label-free particle or cell separation for many applications in research, disease diagnosis, and drug-efficacy assessment. Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.


Optics Express | 2011

Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array.

Bingxin Zhang; Yanhui Zhao; Qingzhen Hao; Brian Kiraly; I. C. Khoo; Shufen Chen; Tony Jun Huang

We have designed and fabricated a dual-band plasmonic absorber in the near-infrared by employing a three-layer structure comprised of an elliptical nanodisk array on top of thin dielectric and metallic films. finite difference time domain (FDTD) simulations indicate that absorption efficiencies greater than 99% can be achieved for both resonance frequencies at normal incidence and the tunable range of the resonant frequency was modeled up to 700 nm by varying the dimensions of the three-layer, elliptical nanodisk array. The symmetry in our two-dimensional nanodisk array eliminates any polarization dependence within the structure, and the near-perfect absorption efficiency is only slightly affected by large incidence angles up to 50 degrees. Experimental measurements demonstrate good agreement with our simulation results.


Lab on a Chip | 2011

Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)†

Jinjie Shi; Shahrzad Yazdi; Sz-Chin Steven Lin; Xiaoyun Ding; I-Kao Chiang; Kendra V. Sharp; Tony Jun Huang

Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.


Lab on a Chip | 2012

Surface acoustic wave (SAW) acoustophoresis: now and beyond

Sz-Chin Steven Lin; Xiaole Mao; Tony Jun Huang

On-chip manipulation of micro-objects has long been sought to facilitate fundamental biological studies and point-of-care diagnostic systems. In recent years, research on surface acoustic wave (SAW) based micro-object manipulation (i.e., SAW acoustophoresis) has gained significant momentum due to its many advantages, such as non-invasiveness, versatility, simple fabrication, easy operation, and convenient integration with other on-chip units. SAW acoustophoresis is especially useful for lab-on-a-chip applications where a compact and non-invasive biomanipulation technique is highly desired. In this Focus article, we discuss recent advancements in SAW acoustophoresis and provide some perspectives on the future development of this dynamic field.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Controlling cell–cell interactions using surface acoustic waves

Feng Guo; Peng Li; Jarrod B. French; Zhangming Mao; Hong Zhao; Sixing Li; Nitesh Nama; James R. Fick; Stephen J. Benkovic; Tony Jun Huang

Significance We present a unique acoustic well approach that can precisely control cell-to-cell distance and cell–cell interactions. Our technology can achieve high precision and high throughput simultaneously while preserving the integrity of cells. It is capable of creating cell assemblies with precise spatial control both in suspension and on a substrate. We envision the exploitation of this powerful technology, for example, in the study of cell–cell interactions in fields, such as immunology, developmental biology, neuroscience, and cancer metastasis, and in the studies of cell–cell and cell–matrix adhesion. The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

Collaboration


Dive into the Tony Jun Huang's collaboration.

Top Co-Authors

Avatar

Sz-Chin Steven Lin

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yuebing Zheng

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Bala Krishna Juluri

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Po-Hsun Huang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Peng Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaole Mao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yanhui Zhao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Feng Guo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Nitesh Nama

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Zhangming Mao

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge