Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Polina Goichberg is active.

Publication


Featured researches published by Polina Goichberg.


Nature Cell Biology | 2001

Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates

Nathalie Q. Balaban; Ulrich Schwarz; Daniel Riveline; Polina Goichberg; Gila Tzur; Ilana Sabanay; Diana Mahalu; S. A. Safran; Alexander D. Bershadsky; Lia Addadi; Benjamin Geiger

Mechanical forces play a major role in the regulation of cell adhesion and cytoskeletal organization. In order to explore the molecular mechanism underlying this regulation, we have investigated the relationship between local force applied by the cell to the substrate and the assembly of focal adhesions. A novel approach was developed for real-time, high-resolution measurements of forces applied by cells at single adhesion sites. This method combines micropatterning of elastomer substrates and fluorescence imaging of focal adhesions in live cells expressing GFP-tagged vinculin. Local forces are correlated with the orientation, total fluorescence intensity and area of the focal adhesions, indicating a constant stress of 5.5 ± 2 nNμm-2. The dynamics of the force-dependent modulation of focal adhesions were characterized by blocking actomyosin contractility and were found to be on a time scale of seconds. The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force.


Nature Medicine | 2006

Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells

Orit Kollet; Ayelet Dar; Shoham Shivtiel; Alexander Kalinkovich; Kfir Lapid; Yejezkel Sztainberg; Melania Tesio; Robert M Samstein; Polina Goichberg; Asaf Spiegel; Ari Elson; Tsvee Lapidot

Here we investigated the potential role of bone-resorbing osteoclasts in homeostasis and stress-induced mobilization of hematopoietic progenitors. Different stress situations induced activity of osteoclasts (OCLs) along the stem cell–rich endosteum region of bone, secretion of proteolytic enzymes and mobilization of progenitors. Specific stimulation of OCLs with RANKL recruited mainly immature progenitors to the circulation in a CXCR4- and MMP-9–dependent manner; however, RANKL did not induce mobilization in young female PTPε-knockout mice with defective OCL bone adhesion and resorption. Inhibition of OCLs with calcitonin reduced progenitor egress in homeostasis, G-CSF mobilization and stress situations. RANKL-stimulated bone-resorbing OCLs also reduced the stem cell niche components SDF-1, stem cell factor (SCF) and osteopontin along the endosteum, which was associated with progenitor mobilization. Finally, the major bone-resorbing proteinase, cathepsin K, also cleaved SDF-1 and SCF. Our findings indicate involvement of OCLs in selective progenitor recruitment as part of homeostasis and host defense, linking bone remodeling with regulation of hematopoiesis.


Journal of Clinical Investigation | 2003

HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34 + stem cell recruitment to the liver

Orit Kollet; Shoham Shivtiel; Yuan–Qing Chen; Jenny Suriawinata; Swan N. Thung; Mariana D. Dabeva; Joy Kahn; Asaf Spiegel; Ayelet Dar; Sarit Samira; Polina Goichberg; Alexander Kalinkovich; Fernando Arenzana-Seisdedos; Arnon Nagler; Izhar Hardan; Michel Revel; David A. Shafritz; Tsvee Lapidot

Hematopoietic stem cells rarely contribute to hepatic regeneration, however, the mechanisms governing their homing to the liver, which is a crucial first step, are poorly understood. The chemokine stromal cell-derived factor-1 (SDF-1), which attracts human and murine progenitors, is expressed by liver bile duct epithelium. Neutralization of the SDF-1 receptor CXCR4 abolished homing and engraftment of the murine liver by human CD34+ hematopoietic progenitors, while local injection of human SDF-1 increased their homing. Engrafted human cells were localized in clusters surrounding the bile ducts, in close proximity to SDF-1-expressing epithelial cells, and differentiated into albumin-producing cells. Irradiation or inflammation increased SDF-1 levels and hepatic injury induced MMP-9 activity, leading to both increased CXCR4 expression and SDF-1-mediated recruitment of hematopoietic progenitors to the liver. Unexpectedly, HGF, which is increased following liver injury, promoted protrusion formation, CXCR4 upregulation, and SDF-1-mediated directional migration by human CD34+ progenitors, and synergized with stem cell factor. Thus, stress-induced signals, such as increased expression of SDF-1, MMP-9, and HGF, recruit human CD34+ progenitors with hematopoietic and/or hepatic-like potential to the liver of NOD/SCID mice. Our results suggest the potential of hematopoietic CD34+/CXCR4+cells to respond to stress signals from nonhematopoietic injured organs as an important mechanism for tissue targeting and repair.


Nature Immunology | 2007

Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34 + cells through Wnt signaling

Asaf Spiegel; Shoham Shivtiel; Alexander Kalinkovich; Aya Ludin; Neta Netzer; Polina Goichberg; Yaara Azaria; Igor B. Resnick; Izhar Hardan; Herzel Ben-Hur; Arnon Nagler; Menachem Rubinstein; Tsvee Lapidot

Catecholamines are important regulators of homeostasis, yet their functions in hematopoiesis are poorly understood. Here we report that immature human CD34+ cells dynamically expressed dopamine and β2-adrenergic receptors, with higher expression in the primitive CD34+CD38lo population. The myeloid cytokines G-CSF and GM-CSF upregulated neuronal receptor expression on immature CD34+ cells. Treatment with neurotransmitters increased the motility, proliferation and colony formation of human progenitor cells, correlating with increased polarity, expression of the metalloproteinase MT1-MMP and activity of the metalloproteinase MMP-2. Treatment with catecholamines enhanced human CD34+ cell engraftment of NOD-SCID mice through Wnt signaling activation and increased cell mobilization and bone marrow Sca-1+c-Kit+Lin− cell numbers. Our results identify new functions for neurotransmitters and myeloid cytokines in the direct regulation of human and mouse progenitor cell migration and development.


Journal of Clinical Investigation | 2009

MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization

Yaron Vagima; Abraham Avigdor; Polina Goichberg; Shoham Shivtiel; Melania Tesio; Alexander Kalinkovich; Karin Golan; Ayelet Dar; Orit Kollet; Isabelle Petit; Orly Perl; Ester Rosenthal; Igor B. Resnick; Izhar Hardan; Yechiel N. Gellman; David Naor; Arnon Nagler; Tsvee Lapidot

The mechanisms governing hematopoietic progenitor cell mobilization are not fully understood. We report higher membrane type 1-MMP (MT1-MMP) and lower expression of the MT1-MMP inhibitor, reversion-inducing cysteine-rich protein with Kazal motifs (RECK), on isolated circulating human CD34+ progenitor cells compared with immature BM cells. The expression of MT1-MMP correlated with clinical mobilization of CD34+ cells in healthy donors and patients with lymphoid malignancies. Treatment with G-CSF further increased MT1-MMP and decreased RECK expression in human and murine hematopoietic cells in a PI3K/Akt-dependent manner, resulting in elevated MT1-MMP activity. Blocking MT1-MMP function by Abs or siRNAs impaired chemotaxis and homing of G-CSF-mobilized human CD34+ progenitors. The mobilization of immature and maturing human progenitors in chimeric NOD/SCID mice by G-CSF was inhibited by anti-MT1-MMP treatment, while RECK neutralization promoted motility and egress of BM CD34+ cells. BM c-kit+ cells from MT1-MMP-deficient mice also exhibited inferior chemotaxis, reduced homing and engraftment capacities, and impaired G-CSF-induced mobilization in murine chimeras. Membranal CD44 cleavage by MT1-MMP was enhanced following G-CSF treatment, reducing CD34+ cell adhesion. Accordingly, CD44-deficient mice had a higher frequency of circulating progenitors. Our results reveal that the motility, adhesion, homing, and mobilization of human hematopoietic progenitor cells are regulated in a cell-autonomous manner by dynamic and opposite changes in MT1-MMP and RECK expression.


Journal of Experimental Medicine | 2008

CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules

Shoham Shivtiel; Orit Kollet; Kfir Lapid; Amir Schajnovitz; Polina Goichberg; Alexander Kalinkovich; Elias Shezen; Melania Tesio; Neta Netzer; Isabelle Petit; Amnon Sharir; Tsvee Lapidot

The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor κB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.


Cancer Research | 2006

Functional CXCR4-Expressing Microparticles and SDF-1 Correlate with Circulating Acute Myelogenous Leukemia Cells

Alexander Kalinkovich; Sigal Tavor; Abraham Avigdor; Joy Kahn; Alexander Brill; Isabelle Petit; Polina Goichberg; Melania Tesio; Neta Netzer; Elizabeth Naparstek; Izhar Hardan; Arnon Nagler; Igor B. Resnick; Alexander Tsimanis; Tsvee Lapidot

Stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 are implicated in the pathogenesis and prognosis of acute myelogenous leukemia (AML). Cellular microparticles, submicron vesicles shed from the plasma membrane of various cells, are also associated with human pathology. In the present study, we investigated the putative relationships between the SDF-1/CXCR4 axis and microparticles in AML. We detected CXCR4-expressing microparticles (CXCR4(+) microparticles) in the peripheral blood and bone marrow plasma samples of normal donors and newly diagnosed adult AML patients. In samples from AML patients, levels of CXCR4(+) microparticles and total SDF-1 were elevated compared with normal individuals. The majority of CXCR4(+) microparticles in AML patients were CD45(+), whereas in normal individuals, they were mostly CD41(+). Importantly, we found a strong correlation between the levels of CXCR4(+) microparticle and WBC count in the peripheral blood and bone marrow plasma obtained from the AML patients. Of interest, levels of functional, noncleaved SDF-1 were reduced in these patients compared with normal individuals and also strongly correlated with the WBC count. Furthermore, our data indicate NH(2)-terminal truncation of the CXCR4 molecule in the microparticles of AML patients. However, such microparticles were capable of transferring the CXCR4 molecule to AML-derived HL-60 cells, enhancing their migration to SDF-1 in vitro and increasing their homing to the bone marrow of irradiated NOD/SCID/beta2m(null) mice. The CXCR4 antagonist AMD3100 reduced these effects. Our findings suggest that functional CXCR4(+) microparticles and SDF-1 are involved in the progression of AML. We propose that their levels are potentially valuable as an additional diagnostic AML variable.


Methods of Molecular Biology | 2011

Pathways Implicated in Stem Cell Migration: The SDF-1/CXCR4 Axis

Yaron Vagima; Kfir Lapid; Orit Kollet; Polina Goichberg; Ronen Alon; Tsvee Lapidot

The hallmark of hematopoietic stem and progenitor cells (HSPCs) is their motility, which is essential for their function, such as recruitment upon demand. Stromal Derived Factor-1 (SDF-1, CXCL12) and its major receptor CXCR4 play major roles in stem cell motility and development. In vitro migration assays, implicating either gradients or cell surface-bound forms of SDF-1, are easy to perform and provide vital information regarding directional and random stem cell motility, which correlate with their repopulation potential in clinical and experimental transplantations. In vivo stem cell homing to the bone marrow, their retention, engraftment, and egress to the circulation, all involve SDF-1/CXCR4 interactions. Finally, other stem cell features such as stem cell survival and proliferation, are also dependent on the SDF-1/CXCR4 axis.


Journal of Molecular Medicine | 2011

MT1-MMP and RECK: opposite and essential roles in hematopoietic stem and progenitor cell retention and migration

Karin Golan; Yaron Vagima; Polina Goichberg; Shiri Gur-Cohen; Tsvee Lapidot

Migratory capacity is a fundamental property of hematopoietic stem and progenitor cells (HSPCs). This feature is employed in clinical mobilization of HSPCs to the circulation and constitutes the basis for modern bone marrow (BM) transplantation procedures which are routinely used to treat hematological malignancies. Therefore, characterization of new players in the complex process of HSPC motility in steady-state conditions as well as during stress situations is a major challenge. We report that while the metalloproteinase membrane type 1-metalloprotease (MT1-MMP) has an essential role in human HSPC trafficking during granulocyte colony-stimulating factor (G-CSF)-induced mobilization, its inhibitor reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and the adhesion molecule CD44 are required for HSPC retention to the BM in steady-state conditions. The nervous system via Wnt signaling along with HGF/c-Met signaling and the complement cascade play a major role in regulating MT1-MMP increased activity, CD44 cleavage, and RECK-reduced expression during G-CSF-induced mobilization. This review will elaborate on the opposite roles of MT1-MMP and RECK in HSPC migration and retention and suggest targeting them in order to facilitate HSPC mobilization and engraftment upon BM transplantation in patients.


Journal of Immunology | 2011

TCR-Independent Killing of B Cell Malignancies by Anti–Third-Party CTLs: The Critical Role of MHC–CD8 Engagement

Assaf Lask; Polina Goichberg; Adva Cohen; Rinat Goren-Arbel; Oren Milstein; Shraga Aviner; Ilan Feine; Eran Ophir; Shlomit Reich-Zeliger; David Hagin; Tirza Klein; Arnon Nagler; Alain Berrebi; Yair Reisner

We previously demonstrated that anti–third-party CTLs (stimulated under IL-2 deprivation against cells with an MHC class I [MHC-I] background different from that of the host and the donor) are depleted of graft-versus-host reactivity and can eradicate B cell chronic lymphocytic leukemia cells in vitro or in an HU/SCID mouse model. We demonstrated in the current study that human allogeneic or autologous anti–third-party CTLs can also efficiently eradicate primary non-Hodgkin B cell lymphoma by inducing slow apoptosis of the pathological cells. Using MHC-I mutant cell line as target cells, which are unrecognizable by the CTL TCR, we demonstrated directly that this killing is TCR independent. Strikingly, this unique TCR-independent killing is induced through lymphoma MHC-I engagement. We further showed that this killing mechanism begins with durable conjugate formation between the CTLs and the tumor cells, through rapid binding of tumor ICAM-1 to the CTL LFA-1 molecule. This conjugation is followed by a slower second step of MHC-I–dependent apoptosis, requiring the binding of the MHC-I α2/3 C region on tumor cells to the CTL CD8 molecule for killing to ensue. By comparing CTL-mediated killing of Daudi lymphoma cells (lacking surface MHC-I expression) to Daudi cells with reconstituted surface MHC-I, we demonstrated directly for the first time to our knowledge, in vitro and in vivo, a novel role for MHC-I in the induction of lymphoma cell apoptosis by CTLs. Additionally, by using different knockout and transgenic strains, we further showed that mouse anti–third-party CTLs also kill lymphoma cells using similar unique TCR-independence mechanism as human CTLs, while sparing normal naive B cells.

Collaboration


Dive into the Polina Goichberg's collaboration.

Top Co-Authors

Avatar

Tsvee Lapidot

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Kalinkovich

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Isabelle Petit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Abraham Avigdor

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Orit Kollet

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoham Shivtiel

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Melania Tesio

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ayelet Dar

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge