Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melania Tesio is active.

Publication


Featured researches published by Melania Tesio.


Nature Medicine | 2006

Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells

Orit Kollet; Ayelet Dar; Shoham Shivtiel; Alexander Kalinkovich; Kfir Lapid; Yejezkel Sztainberg; Melania Tesio; Robert M Samstein; Polina Goichberg; Asaf Spiegel; Ari Elson; Tsvee Lapidot

Here we investigated the potential role of bone-resorbing osteoclasts in homeostasis and stress-induced mobilization of hematopoietic progenitors. Different stress situations induced activity of osteoclasts (OCLs) along the stem cell–rich endosteum region of bone, secretion of proteolytic enzymes and mobilization of progenitors. Specific stimulation of OCLs with RANKL recruited mainly immature progenitors to the circulation in a CXCR4- and MMP-9–dependent manner; however, RANKL did not induce mobilization in young female PTPε-knockout mice with defective OCL bone adhesion and resorption. Inhibition of OCLs with calcitonin reduced progenitor egress in homeostasis, G-CSF mobilization and stress situations. RANKL-stimulated bone-resorbing OCLs also reduced the stem cell niche components SDF-1, stem cell factor (SCF) and osteopontin along the endosteum, which was associated with progenitor mobilization. Finally, the major bone-resorbing proteinase, cathepsin K, also cleaved SDF-1 and SCF. Our findings indicate involvement of OCLs in selective progenitor recruitment as part of homeostasis and host defense, linking bone remodeling with regulation of hematopoiesis.


Leukemia | 2011

Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells

Ayelet Dar; Amir Schajnovitz; Kfir Lapid; Alexander Kalinkovich; Tomer Itkin; Aya Ludin; Wei-Ming Kao; Michela Battista; Melania Tesio; Orit Kollet; Neta Netzer Cohen; Raanan Margalit; Eike C. Buss; Françoise Baleux; Shinya Oishi; Nobutaka Fujii; Andre Larochelle; Cynthia E. Dunbar; Hal E. Broxmeyer; Paul S. Frenette; Tsvee Lapidot

Steady-state egress of hematopoietic progenitor cells can be rapidly amplified by mobilizing agents such as AMD3100, the mechanism, however, is poorly understood. We report that AMD3100 increased the homeostatic release of the chemokine stromal cell derived factor-1 (SDF-1) to the circulation in mice and non-human primates. Neutralizing antibodies against CXCR4 or SDF-1 inhibited both steady state and AMD3100-induced SDF-1 release and reduced egress of murine progenitor cells over mature leukocytes. Intra-bone injection of biotinylated SDF-1 also enhanced release of this chemokine and murine progenitor cell mobilization. AMD3100 directly induced SDF-1 release from CXCR4+ human bone marrow osteoblasts and endothelial cells and activated uPA in a CXCR4/JNK-dependent manner. Additionally, ROS inhibition reduced AMD3100-induced SDF-1 release, activation of circulating uPA and mobilization of progenitor cells. Norepinephrine treatment, mimicking acute stress, rapidly increased SDF-1 release and progenitor cell mobilization, whereas β2-adrenergic antagonist inhibited both steady state and AMD3100-induced SDF-1 release and progenitor cell mobilization in mice. In conclusion, this study reveals that SDF-1 release from bone marrow stromal cells to the circulation emerges as a pivotal mechanism essential for steady-state egress and rapid mobilization of hematopoietic progenitor cells, but not mature leukocytes.


Blood | 2011

Enhanced c-Met activity promotes G-CSF–induced mobilization of hematopoietic progenitor cells via ROS signaling

Melania Tesio; Karin Golan; Simona Corso; Silvia Giordano; Amir Schajnovitz; Yaron Vagima; Shoham Shivtiel; Alexander Kalinkovich; Luisa Caione; Loretta Gammaitoni; Elisa Laurenti; Eike C. Buss; Elias Shezen; Tomer Itkin; Orit Kollet; Isabelle Petit; Andreas Trumpp; James G. Christensen; Massimo Aglietta; Wanda Piacibello; Tsvee Lapidot

Mechanisms governing stress-induced hematopoietic progenitor cell mobilization are not fully deciphered. We report that during granulocyte colony-stimulating factor-induced mobilization c-Met expression and signaling are up-regulated on immature bone marrow progenitors. Interestingly, stromal cell-derived factor 1/CXC chemokine receptor-4 signaling induced hepatocyte growth factor production and c-Met activation. We found that c-Met inhibition reduced mobilization of both immature progenitors and the more primitive Sca-1(+)/c-Kit(+)/Lin(-) cells and interfered with their enhanced chemotactic migration to stromal cell-derived factor 1. c-Met activation resulted in cellular accumulation of reactive oxygen species by mammalian target of rapamycin inhibition of Forkhead Box, subclass O3a. Blockage of mammalian target of rapamycin inhibition or reactive oxygen species signaling impaired c-Met-mediated mobilization. Our data show dynamic c-Met expression and function in the bone marrow and show that enhanced c-Met signaling is crucial to facilitate stress-induced mobilization of progenitor cells as part of host defense and repair mechanisms.


Journal of Clinical Investigation | 2009

MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization

Yaron Vagima; Abraham Avigdor; Polina Goichberg; Shoham Shivtiel; Melania Tesio; Alexander Kalinkovich; Karin Golan; Ayelet Dar; Orit Kollet; Isabelle Petit; Orly Perl; Ester Rosenthal; Igor B. Resnick; Izhar Hardan; Yechiel N. Gellman; David Naor; Arnon Nagler; Tsvee Lapidot

The mechanisms governing hematopoietic progenitor cell mobilization are not fully understood. We report higher membrane type 1-MMP (MT1-MMP) and lower expression of the MT1-MMP inhibitor, reversion-inducing cysteine-rich protein with Kazal motifs (RECK), on isolated circulating human CD34+ progenitor cells compared with immature BM cells. The expression of MT1-MMP correlated with clinical mobilization of CD34+ cells in healthy donors and patients with lymphoid malignancies. Treatment with G-CSF further increased MT1-MMP and decreased RECK expression in human and murine hematopoietic cells in a PI3K/Akt-dependent manner, resulting in elevated MT1-MMP activity. Blocking MT1-MMP function by Abs or siRNAs impaired chemotaxis and homing of G-CSF-mobilized human CD34+ progenitors. The mobilization of immature and maturing human progenitors in chimeric NOD/SCID mice by G-CSF was inhibited by anti-MT1-MMP treatment, while RECK neutralization promoted motility and egress of BM CD34+ cells. BM c-kit+ cells from MT1-MMP-deficient mice also exhibited inferior chemotaxis, reduced homing and engraftment capacities, and impaired G-CSF-induced mobilization in murine chimeras. Membranal CD44 cleavage by MT1-MMP was enhanced following G-CSF treatment, reducing CD34+ cell adhesion. Accordingly, CD44-deficient mice had a higher frequency of circulating progenitors. Our results reveal that the motility, adhesion, homing, and mobilization of human hematopoietic progenitor cells are regulated in a cell-autonomous manner by dynamic and opposite changes in MT1-MMP and RECK expression.


Journal of Experimental Medicine | 2008

CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules

Shoham Shivtiel; Orit Kollet; Kfir Lapid; Amir Schajnovitz; Polina Goichberg; Alexander Kalinkovich; Elias Shezen; Melania Tesio; Neta Netzer; Isabelle Petit; Amnon Sharir; Tsvee Lapidot

The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor κB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.


Cancer Research | 2006

Functional CXCR4-Expressing Microparticles and SDF-1 Correlate with Circulating Acute Myelogenous Leukemia Cells

Alexander Kalinkovich; Sigal Tavor; Abraham Avigdor; Joy Kahn; Alexander Brill; Isabelle Petit; Polina Goichberg; Melania Tesio; Neta Netzer; Elizabeth Naparstek; Izhar Hardan; Arnon Nagler; Igor B. Resnick; Alexander Tsimanis; Tsvee Lapidot

Stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 are implicated in the pathogenesis and prognosis of acute myelogenous leukemia (AML). Cellular microparticles, submicron vesicles shed from the plasma membrane of various cells, are also associated with human pathology. In the present study, we investigated the putative relationships between the SDF-1/CXCR4 axis and microparticles in AML. We detected CXCR4-expressing microparticles (CXCR4(+) microparticles) in the peripheral blood and bone marrow plasma samples of normal donors and newly diagnosed adult AML patients. In samples from AML patients, levels of CXCR4(+) microparticles and total SDF-1 were elevated compared with normal individuals. The majority of CXCR4(+) microparticles in AML patients were CD45(+), whereas in normal individuals, they were mostly CD41(+). Importantly, we found a strong correlation between the levels of CXCR4(+) microparticle and WBC count in the peripheral blood and bone marrow plasma obtained from the AML patients. Of interest, levels of functional, noncleaved SDF-1 were reduced in these patients compared with normal individuals and also strongly correlated with the WBC count. Furthermore, our data indicate NH(2)-terminal truncation of the CXCR4 molecule in the microparticles of AML patients. However, such microparticles were capable of transferring the CXCR4 molecule to AML-derived HL-60 cells, enhancing their migration to SDF-1 in vitro and increasing their homing to the bone marrow of irradiated NOD/SCID/beta2m(null) mice. The CXCR4 antagonist AMD3100 reduced these effects. Our findings suggest that functional CXCR4(+) microparticles and SDF-1 are involved in the progression of AML. We propose that their levels are potentially valuable as an additional diagnostic AML variable.


Journal of Immunology | 2010

c-Met and Its Ligand Hepatocyte Growth Factor/Scatter Factor Regulate Mature B Cell Survival in a Pathway Induced by CD74

Maya Gordin; Melania Tesio; Sivan Cohen; Yael Gore; Frida Lantner; Lin Leng; Richard Bucala; Idit Shachar

The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74–HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.


Journal of Experimental Medicine | 2013

Pten loss in the bone marrow leads to G-CSF–mediated HSC mobilization

Melania Tesio; Gabriela M. Oser; Irène Baccelli; William Blanco-Bose; Hong Wu; Joachim R. Göthert; Scott C. Kogan; Andreas Trumpp

Loss of the phosphatase and tumor suppressor gene PTEN induces G-CSF production in myeloid and stromal cells, thereby promoting HSCs mobilization from the bone marrow to the spleen and the initiation of lethal leukemia.


Stem Cells | 2006

Serial Transplantations in Nonobese Diabetic/Severe Combined Immunodeficiency Mice of Transduced Human CD34+ Cord Blood Cells: Efficient Oncoretroviral Gene Transfer and Ex Vivo Expansion Under Serum-Free Conditions

Loretta Gammaitoni; Simona Lucchi; Stefania Bruno; Melania Tesio; Monica Gunetti; Ymera Pignochino; Giorgia Migliardi; Lorenza Lazzari; Massimo Aglietta; Paolo Rebulla; Wanda Piacibello

Stable oncoretroviral gene transfer into hematopoietic stem cells (HSCs) provides permanent genetic disease correction. It is crucial to transplant enough transduced HSCs to compete with and replace the defective host hemopoiesis. To increase the number of transduced cells, the role of ex vivo expansion was investigated. For a possible clinical application, all experiments were carried out in serum‐free media. A low‐affinity nerve growth factor receptor (LNGFR) pseudotyped murine retroviral vector was used to transduce cord blood CD34+ cells, which were then expanded ex vivo. These cells engrafted up to three generations of serially transplanted nonobese diabetic/severe combined immunodeficiency mice: 54.26% ± 5.59%, 19.05% ± 2.01%, and 6.15% ± 5.16% CD45+ cells from primary, secondary, and tertiary recipient bone marrow, respectively, were LNGFR+. Repopulation in secondary and tertiary recipients indicates stability of transgene expression and long‐term self‐renewal potential of transduced HSCs, suggesting that retroviral gene transfer into HSCs, followed by ex vivo expansion, could facilitate long‐term engraftment of genetically modified HSCs.


Leukemia | 2011

Erratum: Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells (Leukemia (April 2011) DOI:10.1038/leu.2011.62)

Ayelet Dar; Amir Schajnovitz; Kfir Lapid; Alexander Kalinkovich; Tomer Itkin; Aya Ludin; Wei-Ming Kao; Michela Battista; Melania Tesio; Orit Kollet; N. N. Cohen; Raanan Margalit; Eike C. Buss; Françoise Baleux; Shinya Oishi; Nobutaka Fujii; Andre Larochelle; Cynthia E. Dunbar; Hal E. Broxmeyer; Paul S. Frenette; Tsvee Lapidot

Figure 5 Neurotransmitter stimulation induces functional SDF-1 release and rapid progenitor mobilization. (a, b) SDF-1 levels in the plasma and BM sup. (a) and circulating WBC and progenitor cells (b) in mice treated with NE or the b2 adrenergic antagonist ICI, 1 h after administration. Control mice received injections of PBS, n1⁄4 6 mice/group. Values of plasma SDF-1 levels: 1.1±0.17, 1.8±0.5, 0.6±0.06, 2±0.3, 2.8±0.5 and 1.2±0.1 ng/ml, respectively, *Po0.05 compared with control mice, Po0.05 compared with AMD3100-treated mice. (c) RT-PCR analysis (top) for mRNA expression and flow-cytometry analysis (bottom) for cell surface expression of b2 adrenergic receptor on cultured primary human BMEC. –RT1⁄4 cDNA was prepared without reverse transcriptase as a control. (d) SDF-1 release from primary human BMEC in response to stimulation with ICI (10 ng/ml), n1⁄4 3. (e) AMD3100-induced mobilization of progenitors in control and sympathectomized (6OHDA) of either neonate or adult mice. *Po0.005. n1⁄410–15 mice/group. Leukemia (2011) 25, 1378 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11

Collaboration


Dive into the Melania Tesio's collaboration.

Top Co-Authors

Avatar

Alexander Kalinkovich

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tsvee Lapidot

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Isabelle Petit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ayelet Dar

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Orit Kollet

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Amir Schajnovitz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Polina Goichberg

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoham Shivtiel

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge