Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Polina Gross is active.

Publication


Featured researches published by Polina Gross.


Cell Reports | 2015

The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition

Timothy S. Luongo; Jonathan P Lambert; Ancai Yuan; Xue-Qian Zhang; Polina Gross; Jianliang Song; Santhanam Shanmughapriya; Erhe Gao; Mohit Jain; Steven R. Houser; Walter J. Koch; Joseph Y. Cheung; Muniswamy Madesh; John W. Elrod

Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca(2+)), thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU) channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu(-/-) mice display no overt baseline phenotype and are protected against mCa(2+) overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu(-/-) mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca(2+)-dependent metabolism during acute stress.


Circulation Research | 2015

GDF11 Does Not Rescue Aging-Related Pathological Hypertrophy

Shavonn Smith; Xiaoxiao Zhang; Xiaoying Zhang; Polina Gross; Timothy Starosta; Sadia Mohsin; Michael Franti; Priyanka Gupta; David B. Hayes; Maria Myzithras; Julius Kahn; James Tanner; Steven M. Weldon; Ashraf Khalil; Xinji Guo; Abdelkarim Sabri; Xiongwen Chen; Scott M. MacDonnell; Steven R. Houser

RATIONALE Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family of secreted factors. A recent study showed that reduced GDF11 blood levels with aging was associated with pathological cardiac hypertrophy (PCH) and restoring GDF11 to normal levels in old mice rescued PCH. OBJECTIVE To determine whether and by what mechanism GDF11 rescues aging dependent PCH. METHODS AND RESULTS Twenty-four-month-old C57BL/6 mice were given a daily injection of either recombinant (r) GDF11 at 0.1 mg/kg or vehicle for 28 days. rGDF11 bioactivity was confirmed in vitro. After treatment, rGDF11 levels were significantly increased, but there was no significant effect on either heart weight or body weight. Heart weight/body weight ratios of old mice were not different from 8- or 12-week-old animals, and the PCH marker atrial natriuretic peptide was not different in young versus old mice. Ejection fraction, internal ventricular dimension, and septal wall thickness were not significantly different between rGDF11 and vehicle-treated animals at baseline and remained unchanged at 1, 2, and 4 weeks of treatment. There was no difference in myocyte cross-sectional area rGDF11 versus vehicle-treated old animals. In vitro studies using phenylephrine-treated neonatal rat ventricular myocytes, to explore the putative antihypertrophic effects of GDF11, showed that GDF11 did not reduce neonatal rat ventricular myocytes hypertrophy, but instead induced hypertrophy. CONCLUSIONS Our studies show that there is no age-related PCH in disease-free 24-month-old C57BL/6 mice and that restoring GDF11 in old mice has no effect on cardiac structure or function.


Nature | 2017

The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability

Timothy S. Luongo; Jonathan P Lambert; Polina Gross; Mary Nwokedi; Alyssa A. Lombardi; Santhanam Shanmughapriya; April C. Carpenter; Devin Kolmetzky; Erhe Gao; Jop H. van Berlo; Emily J. Tsai; Jeffery D. Molkentin; Xiongwen Chen; Muniswamy Madesh; Steven R. Houser; John W. Elrod

Mitochondrial calcium (mCa2+) has a central role in both metabolic regulation and cell death signalling, however its role in homeostatic function and disease is controversial. Slc8b1 encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), which is proposed to be the primary mechanism for mCa2+ extrusion in excitable cells. Here we show that tamoxifen-induced deletion of Slc8b1 in adult mouse hearts causes sudden death, with less than 13% of affected mice surviving after 14 days. Lethality correlated with severe myocardial dysfunction and fulminant heart failure. Mechanistically, cardiac pathology was attributed to mCa2+ overload driving increased generation of superoxide and necrotic cell death, which was rescued by genetic inhibition of mitochondrial permeability transition pore activation. Corroborating these findings, overexpression of NCLX in the mouse heart by conditional transgenesis had the beneficial effect of augmenting mCa2+ clearance, preventing permeability transition and protecting against ischaemia-induced cardiomyocyte necrosis and heart failure. These results demonstrate the essential nature of mCa2+ efflux in cellular function and suggest that augmenting mCa2+ efflux may be a viable therapeutic strategy in disease.


Circulation Research | 2014

Sorafenib Cardiotoxicity Increases Mortality After Myocardial Infarction

Jason M. Duran; Catherine A. Makarewich; Danielle M. Trappanese; Polina Gross; Sharmeen Husain; Jonathan Dunn; Hind Lal; Thomas E Sharp; Timothy Starosta; Ronald J. Vagnozzi; Remus Berretta; Mary F. Barbe; Daohai Yu; Erhe Gao; Hajime Kubo; Thomas Force; Steven R. Houser

Rationale: Sorafenib is an effective treatment for renal cell carcinoma, but recent clinical reports have documented its cardiotoxicity through an unknown mechanism. Objective: Determining the mechanism of sorafenib-mediated cardiotoxicity. Methods and Results: Mice treated with sorafenib or vehicle for 3 weeks underwent induced myocardial infarction (MI) after 1 week of treatment. Sorafenib markedly decreased 2-week survival relative to vehicle-treated controls, but echocardiography at 1 and 2 weeks post MI detected no differences in cardiac function. Sorafenib-treated hearts had significantly smaller diastolic and systolic volumes and reduced heart weights. High doses of sorafenib induced necrotic death of isolated myocytes in vitro, but lower doses did not induce myocyte death or affect inotropy. Histological analysis documented increased myocyte cross-sectional area despite smaller heart sizes after sorafenib treatment, further suggesting myocyte loss. Sorafenib caused apoptotic cell death of cardiac- and bone-derived c-kit+ stem cells in vitro and decreased the number of BrdU+ (5-bromo-2’-deoxyuridine+) myocytes detected at the infarct border zone in fixed tissues. Sorafenib had no effect on infarct size, fibrosis, or post-MI neovascularization. When sorafenib-treated animals received metoprolol treatment post MI, the sorafenib-induced increase in post-MI mortality was eliminated, cardiac function was improved, and myocyte loss was ameliorated. Conclusions: Sorafenib cardiotoxicity results from myocyte necrosis rather than from any direct effect on myocyte function. Surviving myocytes undergo pathological hypertrophy. Inhibition of c-kit+ stem cell proliferation by inducing apoptosis exacerbates damage by decreasing endogenous cardiac repair. In the setting of MI, which also causes large-scale cell loss, sorafenib cardiotoxicity dramatically increases mortality.


Journal of the American College of Cardiology | 2015

Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy

Felix Woitek; Lorena Zentilin; Nicholas E. Hoffman; Jeffery C. Powers; Isabel Ottiger; Suraj Parikh; Anna M. Kulczycki; Marykathryn Hurst; Nadja Ring; Tao Wang; Farah Shaikh; Polina Gross; Harinder K. Singh; Mikhail A. Kolpakov; Axel Linke; Steven R. Houser; Victor Rizzo; Abdelkarim Sabri; Muniswamy Madesh; Mauro Giacca; Fabio A. Recchia

BACKGROUND Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. RESULTS Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model

Amir Toib; Chen Zhang; Giulia Borghetti; Xiaoxiao Zhang; Markus Wallner; Yijun Yang; Constantine D. Troupes; Hajime Kubo; Thomas E Sharp; Eric Feldsott; Remus Berretta; Neil Zalavadia; Danielle M. Trappanese; Shavonn C Harper; Polina Gross; Xiongwen Chen; Sadia Mohsin; Steven R. Houser

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+ and Ca2+ in the development of HCM, but the role of repolarizing K+ currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K+ currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K+ currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K+ channel subunits. In conclusion, decrease in repolarizing K+ currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility.NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K+ currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy.


Scientific Reports | 2016

Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images

Polina Gross; Erdem Varol; Markus Wallner; Danielle M. Trappanese; Thomas E Sharp; Timothy Starosta; Jason M. Duran; Sarah Koller; Christos Davatzikos; Steven R. Houser

Determination of fundamental mechanisms of disease often hinges on histopathology visualization and quantitative image analysis. Currently, the analysis of multi-channel fluorescence tissue images is primarily achieved by manual measurements of tissue cellular content and sub-cellular compartments. Since the current manual methodology for image analysis is a tedious and subjective approach, there is clearly a need for an automated analytical technique to process large-scale image datasets. Here, we introduce Nuquantus (Nuclei quantification utility software) - a novel machine learning-based analytical method, which identifies, quantifies and classifies nuclei based on cells of interest in composite fluorescent tissue images, in which cell borders are not visible. Nuquantus is an adaptive framework that learns the morphological attributes of intact tissue in the presence of anatomical variability and pathological processes. Nuquantus allowed us to robustly perform quantitative image analysis on remodeling cardiac tissue after myocardial infarction. Nuquantus reliably classifies cardiomyocyte versus non-cardiomyocyte nuclei and detects cell proliferation, as well as cell death in different cell classes. Broadly, Nuquantus provides innovative computerized methodology to analyze complex tissue images that significantly facilitates image analysis and minimizes human bias.


Journal of Molecular and Cellular Cardiology | 2015

Comparative effects of urocortins and stresscopin on cardiac myocyte contractility

Catherine A. Makarewich; Constantine D. Troupes; Sarah M. Schumacher; Polina Gross; Walter J. Koch; David L. Crandall; Steven R. Houser

RATIONALE There is a current need for the development of new therapies for patients with heart failure. OBJECTIVE We test the effects of members of the corticotropin-releasing factor (CRF) family of peptides on myocyte contractility to validate them as potential heart failure therapeutics. METHODS AND RESULTS Adult feline left ventricular myocytes (AFMs) were isolated and contractility was assessed in the presence and absence of CRF peptides Urocortin 2 (UCN2), Urocortin 3 (UCN3), Stresscopin (SCP), and the β-adrenergic agonist isoproterenol (Iso). An increase in fractional shortening and peak Ca(2+) transient amplitude was seen in the presence of all CRF peptides. A decrease in Ca(2+) decay rate (Tau) was also observed at all concentrations tested. cAMP generation was measured by ELISA in isolated AFMs in response to the CRF peptides and Iso and significant production was seen at all concentrations and time points tested. CONCLUSIONS The CRF family of peptides effectively increases cardiac contractility and should be evaluated as potential novel therapeutics for heart failure patients.


Journal of the American Heart Association | 2017

Peptidyl-prolyl isomerase 1 regulates Ca2+ handling by modulating sarco(Endo)plasmic reticulum calcium ATPase and Na2+/Ca2+ exchanger 1 protein levels and function

Veronica Sacchi; Bingyan J. Wang; Dieter Kubli; Alexander S. Martinez; Jung Kang Jin; Roberto Alvarez; Nirmala Hariharan; Christopher C. Glembotski; Takafumi Uchida; James S. Malter; Yijun Yang; Polina Gross; Chen Zhang; Steven R. Houser; Marcello Rota; Mark A. Sussman

Background Aberrant Ca2+ handling is a prominent feature of heart failure. Elucidation of the molecular mechanisms responsible for aberrant Ca2+ handling is essential for the development of strategies to blunt pathological changes in calcium dynamics. The peptidyl‐prolyl cis‐trans isomerase peptidyl‐prolyl isomerase 1 (Pin1) is a critical mediator of myocardial hypertrophy development and cardiac progenitor cell cycle. However, the influence of Pin1 on calcium cycling regulation has not been explored. On the basis of these findings, the aim of this study is to define Pin1 as a novel modulator of Ca2+ handling, with implications for improving myocardial contractility and potential for ameliorating development of heart failure. Methods and Results Pin1 gene deletion or pharmacological inhibition delays cytosolic Ca2+ decay in isolated cardiomyocytes. Paradoxically, reduced Pin1 activity correlates with increased sarco(endo)plasmic reticulum calcium ATPase (SERCA2a) and Na2+/Ca2+ exchanger 1 protein levels. However, SERCA2a ATPase activity and calcium reuptake were reduced in sarcoplasmic reticulum membranes isolated from Pin1‐deficient hearts, suggesting that Pin1 influences SERCA2a function. SERCA2a and Na2+/Ca2+ exchanger 1 associated with Pin1, as revealed by proximity ligation assay in myocardial tissue sections, indicating that regulation of Ca2+ handling within cardiomyocytes is likely influenced through Pin1 interaction with SERCA2a and Na2+/Ca2+ exchanger 1 proteins. Conclusions Pin1 serves as a modulator of SERCA2a and Na2+/Ca2+ exchanger 1 Ca2+ handling proteins, with loss of function resulting in impaired cardiomyocyte relaxation, setting the stage for subsequent investigations to assess Pin1 dysregulation and modulation in the progression of heart failure.


Journal of the American College of Cardiology | 2015

Intracoronary Cytoprotective Gene Therapy

Felix Woitek; Lorena Zentilin; Nicholas E. Hoffman; Jeffery C. Powers; Isabel Ottiger; Suraj Parikh; Anna M. Kulczycki; Marykathryn Hurst; Nadja Ring; Tao Wang; Farah Shaikh; Polina Gross; Harinder R. Singh; Mikhail A. Kolpakov; Axel Linke; Steven R. Houser; Victor Rizzo; Abdelkarim Sabri; Muniswamy Madesh; Mauro Giacca; Fabio A. Recchia

BACKGROUND Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. RESULTS Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure.

Collaboration


Dive into the Polina Gross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge