Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas E Sharp is active.

Publication


Featured researches published by Thomas E Sharp.


Circulation Research | 2013

Bone-Derived Stem Cells Repair the Heart after Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms

Jason M. Duran; Catherine A. Makarewich; Thomas E Sharp; Timothy Starosta; Fang Zhu; Nicholas E. Hoffman; Yumi Chiba; Muniswamy Madesh; Remus Berretta; Hajime Kubo; Steven R. Houser

Rationale: Autologous bone marrow–derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. Objective: To determine the mechanism by which novel bone-derived stem cells support the injured heart. Methods and Results: Cortical bone–derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells– or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells–treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP− myocytes. Conclusions: CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.


Heart Failure Reviews | 2015

BAG3: a new player in the heart failure paradigm

Tijana Knezevic; Valerie D. Myers; Jennifer Gordon; Douglas G. Tilley; Thomas E Sharp; JuFang Wang; Kamel Khalili; Joseph Y. Cheung; Arthur M. Feldman

BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.


Circulation Research | 2014

Sorafenib Cardiotoxicity Increases Mortality After Myocardial Infarction

Jason M. Duran; Catherine A. Makarewich; Danielle M. Trappanese; Polina Gross; Sharmeen Husain; Jonathan Dunn; Hind Lal; Thomas E Sharp; Timothy Starosta; Ronald J. Vagnozzi; Remus Berretta; Mary F. Barbe; Daohai Yu; Erhe Gao; Hajime Kubo; Thomas Force; Steven R. Houser

Rationale: Sorafenib is an effective treatment for renal cell carcinoma, but recent clinical reports have documented its cardiotoxicity through an unknown mechanism. Objective: Determining the mechanism of sorafenib-mediated cardiotoxicity. Methods and Results: Mice treated with sorafenib or vehicle for 3 weeks underwent induced myocardial infarction (MI) after 1 week of treatment. Sorafenib markedly decreased 2-week survival relative to vehicle-treated controls, but echocardiography at 1 and 2 weeks post MI detected no differences in cardiac function. Sorafenib-treated hearts had significantly smaller diastolic and systolic volumes and reduced heart weights. High doses of sorafenib induced necrotic death of isolated myocytes in vitro, but lower doses did not induce myocyte death or affect inotropy. Histological analysis documented increased myocyte cross-sectional area despite smaller heart sizes after sorafenib treatment, further suggesting myocyte loss. Sorafenib caused apoptotic cell death of cardiac- and bone-derived c-kit+ stem cells in vitro and decreased the number of BrdU+ (5-bromo-2’-deoxyuridine+) myocytes detected at the infarct border zone in fixed tissues. Sorafenib had no effect on infarct size, fibrosis, or post-MI neovascularization. When sorafenib-treated animals received metoprolol treatment post MI, the sorafenib-induced increase in post-MI mortality was eliminated, cardiac function was improved, and myocyte loss was ameliorated. Conclusions: Sorafenib cardiotoxicity results from myocyte necrosis rather than from any direct effect on myocyte function. Surviving myocytes undergo pathological hypertrophy. Inhibition of c-kit+ stem cell proliferation by inducing apoptosis exacerbates damage by decreasing endogenous cardiac repair. In the setting of MI, which also causes large-scale cell loss, sorafenib cardiotoxicity dramatically increases mortality.


Frontiers in Oncology | 2014

Stem Cell Therapy and Breast Cancer Treatment: Review of Stem Cell Research and Potential Therapeutic Impact Against Cardiotoxicities Due to Breast Cancer Treatment

Thomas E Sharp; Jon C. George

A new problem has emerged with the ever-increasing number of breast cancer survivors. While early screening and advances in treatment have allowed these patients to overcome their cancer, these treatments often have adverse cardiovascular side effects that can produce abnormal cardiovascular function. Chemotherapeutic and radiation therapy have both been linked to cardiotoxicity; these therapeutics can cause a loss of cardiac muscle and deterioration of vascular structure that can eventually lead to heart failure (HF). This cardiomyocyte toxicity can leave the breast cancer survivor with a probable diagnosis of dilated or restrictive cardiomyopathy (DCM or RCM). While current HF standard of care can alleviate symptoms, other than heart transplantation, there is no therapy that replaces cardiac myocytes that are killed during cancer therapies. There is a need to develop novel therapeutics that can either prevent or reverse the cardiac injury caused by cancer therapeutics. These new therapeutics should promote the regeneration of lost or deteriorating myocardium. Over the last several decades, the therapeutic potential of cell-based therapy has been investigated for HF patients. In this review, we discuss the progress of pre-clinical and clinical stem cell research for the diseased heart and discuss the possibility of utilizing these novel therapies to combat cardiotoxicity observed in breast cancer survivors.


Circulation Research | 2015

Unique Features of Cortical Bone Stem Cells Associated with Repair of the Injured Heart

Sadia Mohsin; Constantine D. Troupes; Timothy Starosta; Thomas E Sharp; Elorm J Agra; Shavonn Smith; Jason M. Duran; Neil Zalavadia; Yan Zhou; Hajime Kubo; Remus Berretta; Steven R. Houser

RATIONALE Adoptive transfer of multiple stem cell types has only had modest effects on the structure and function of failing human hearts. Despite increasing the use of stem cell therapies, consensus on the optimal stem cell type is not adequately defined. The modest cardiac repair and functional improvement in patients with cardiac disease warrants identification of a novel stem cell population that possesses properties that induce a more substantial improvement in patients with heart failure. OBJECTIVE To characterize and compare surface marker expression, proliferation, survival, migration, and differentiation capacity of cortical bone stem cells (CBSCs) relative to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs), which have already been tested in early stage clinical trials. METHODS AND RESULTS CBSCs, MSCs, and CDCs were isolated from Gottingen miniswine or transgenic C57/BL6 mice expressing enhanced green fluorescent protein and were expanded in vitro. CBSCs possess a unique surface marker profile, including high expression of CD61 and integrin β4 versus CDCs and MSCs. In addition, CBSCs were morphologically distinct and showed enhanced proliferation capacity versus CDCs and MSCs. CBSCs had significantly better survival after exposure to an apoptotic stimuli when compared with MSCs. ATP and histamine induced a transient increase of intracellular Ca(2+) concentration in CBSCs versus CDCs and MSCs, which either respond to ATP or histamine only further documenting the differences between the 3 cell types. CONCLUSIONS CBSCs are unique from CDCs and MSCs and possess enhanced proliferative, survival, and lineage commitment capacity that could account for the enhanced protective effects after cardiac injury.


Clinical and Translational Science | 2012

A Characterization and Targeting of the Infarct Border Zone in a Swine Model of Myocardial Infarction

Jason M. Duran; Sharven Taghavi; Remus Berretta; Catherine A. Makarewich; Thomas E Sharp; Tim Starosta; Foram Udeshi; Jon C. George; Hajime Kubo; Steven R. Houser

Introduction: Novel therapies for myocardial infarction (MI) involving stem cells, gene therapy, biomaterials, or revascularization strategies have shown promise in animal studies and clinical trials, but results have been limited partially due to the injection of therapeutics into ischemic myocardium that cannot support their mechanism of action. Accurate targeting of therapeutics precisely to the infarct border zone (BZ) may be essential for effective repair of the ischemic heart.


Circulation Research | 2017

Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial InfarctionNovelty and Significance

Thomas E Sharp; Giana J. Schena; Alexander R. Hobby; Timothy Starosta; Remus Berretta; Markus Wallner; Giulia Borghetti; Polina Gross; Daohai Yu; Jaslyn Johnson; Eric Feldsott; Danielle M. Trappanese; Amir Toib; Joseph E. Rabinowitz; Jon C. George; Hajime Kubo; Sadia Mohsin; Steven R. Houser

Rationale: Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. Objective: To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. Methods and Results: Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia–reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5–ethynyl–2′deoxyuridine (EdU)—a thymidine analog—containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals. Conclusions: CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.


Scientific Reports | 2017

A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function

Markus Wallner; Deborah M. Eaton; Remus Berretta; Giulia Borghetti; Jichuan Wu; Sandy T. Baker; Eric Feldsott; Thomas E Sharp; Sadia Mohsin; Mark A. Oyama; Dirk von Lewinski; Heiner Post; Marla R. Wolfson; Steven R. Houser

Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.


JACC: Basic to Translational Science | 2017

Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of Heart Failure With Reduced Ejection Fraction

Thomas E Sharp; Hajime Kubo; Remus Berretta; Timothy Starosta; Markus Wallner; Giana J. Schena; Alexander R. Hobby; Daohai Yu; Danielle M. Trappanese; Jon C. George; Jeffery D. Molkentin; Steven R. Houser

Visual Abstract


American Journal of Physiology-heart and Circulatory Physiology | 2017

Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model

Amir Toib; Chen Zhang; Giulia Borghetti; Xiaoxiao Zhang; Markus Wallner; Yijun Yang; Constantine D. Troupes; Hajime Kubo; Thomas E Sharp; Eric Feldsott; Remus Berretta; Neil Zalavadia; Danielle M. Trappanese; Shavonn C Harper; Polina Gross; Xiongwen Chen; Sadia Mohsin; Steven R. Houser

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+ and Ca2+ in the development of HCM, but the role of repolarizing K+ currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K+ currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K+ currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K+ channel subunits. In conclusion, decrease in repolarizing K+ currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility.NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K+ currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy.

Collaboration


Dive into the Thomas E Sharp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon C. George

Deborah Heart and Lung Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge