Pompeo Volpe
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pompeo Volpe.
Trends in Pharmacological Sciences | 1993
Vincenzo Sorrentino; Pompeo Volpe
Ryanodine receptors are intracellular Ca2+ channels that have been known for more than a decade to have a role in releasing Ca2+ from the sarcoplasmic reticulum to regulate contraction in skeletal and cardiac muscle fibres. Vincenzo Sorrentino and Pompeo Volpe review some recent developments: the ryanodine receptor channels have now been found to be expressed in the central nervous system, and the cloning of a third ryanodine receptor gene (RYR3) has revealed that this new isoform is widely expressed in several tissues and cells. In consequence, the view of ryanodine receptors as Ca2+ channels of muscle cells is rapidly changing, and these channels seem set to take a more central position on the stage of intracellular Ca2+ signalling.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Dmitry Terentyev; Serge Viatchenko-Karpinski; Inna Györke; Pompeo Volpe; Simon C. Williams; Sandor Gyorke
Calsequestrin is a high-capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR), an intracellular Ca release and storage organelle in muscle. Mutations in the cardiac calsequestrin gene (CSQ2) have been linked to arrhythmias and sudden death. We have used Ca-imaging and patch-clamp methods in combination with adenoviral gene transfer strategies to explore the function of CSQ2 in adult rat heart cells. By increasing or decreasing CSQ2 levels, we showed that CSQ2 not only determines the Ca storage capacity of the SR but also positively controls the amount of Ca released from this organelle during excitation–contraction coupling. CSQ2 controls Ca release by prolonging the duration of Ca fluxes through the SR Ca-release sites. In addition, the dynamics of functional restitution of Ca-release sites after Ca discharge were prolonged when CSQ2 levels were elevated and accelerated in the presence of lowered CSQ2 protein levels. Furthermore, profound disturbances in rhythmic Ca transients in myocytes undergoing periodic electrical stimulation were observed when CSQ2 levels were reduced. We conclude that CSQ2 is a key determinant of the functional size and stability of SR Ca stores in cardiac muscle. CSQ2 appears to exert its effects by influencing the local luminal Ca concentration-dependent gating of the Ca-release channels and by acting as both a reservoir and a sink for Ca in SR. The abnormal restitution of Ca-release channels in the presence of reduced CSQ2 levels provides a plausible explanation for ventricular arrhythmia associated with mutations of CSQ2.
Circulation | 2006
Marina Raffaele di Barletta; Serge Viatchenko-Karpinski; Alessandra Nori; Mirella Memmi; Dmitry Terentyev; Federica Turcato; Giorgia Valle; Nicoletta Rizzi; Carlo Napolitano; Sandor Gyorke; Pompeo Volpe; Silvia G. Priori
Background— Four distinct mutations in the human cardiac calsequestrin gene (CASQ2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). The mechanisms leading to the clinical phenotype are still poorly understood because only 1 CASQ2 mutation has been characterized in vitro. Methods and Results— We identified a homozygous 16-bp deletion at position 339 to 354 leading to a frame shift and a stop codon after 5aa (CASQ2G112+5X) in a child with stress-induced ventricular tachycardia and cardiac arrest. The same deletion was also identified in association with a novel point mutation (CASQ2L167H) in a highly symptomatic CPVT child who is the first CPVT patient carrier of compound heterozygous CASQ2 mutations. We characterized in vitro the properties of CASQ2 mutants: CASQ2G112+5X did not bind Ca2+, whereas CASQ2L167H had normal calcium-binding properties. When expressed in rat myocytes, both mutants decreased the sarcoplasmic reticulum Ca2+-storing capacity and reduced the amplitude of ICa-induced Ca2+ transients and of spontaneous Ca2+ sparks in permeabilized myocytes. Exposure of myocytes to isoproterenol caused the development of delayed afterdepolarizations in CASQ2G112+5X. Conclusions— CASQ2L167H and CASQ2G112+5X alter CASQ2 function in cardiac myocytes, which leads to reduction of active sarcoplasmic reticulum Ca2+ release and calcium content. In addition, CASQ2G112+5X displays altered calcium-binding properties and leads to delayed afterdepolarizations. We conclude that the 2 CASQ2 mutations identified in CPVT create distinct abnormalities that lead to abnormal intracellular calcium regulation, thus facilitating the development of tachyarrhythmias.
Circulation Research | 2006
Dmitry Terentyev; Alessandra Nori; Massimo Santoro; Serge Viatchenko-Karpinski; Zuzana Kubalova; Inna Györke; Radmila Terentyeva; Srikanth Vedamoorthyrao; Nico A. Blom; Giorgia Valle; Carlo Napolitano; Simon C. Williams; Pompeo Volpe; Silvia G. Priori; Sandor Gyorke
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca2+-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2R33Q in adult rat myocytes led to an increase in excitation–contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca2+-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia.
Circulation Research | 2004
Serge Viatchenko-Karpinski; Dmitry Terentyev; Inna Györke; Radmila Terentyeva; Pompeo Volpe; Silvia G. Priori; Carlo Napolitano; Alessandra Nori; Simon C. Williams; Sandor Gyorke
Abstract— Mutations in human cardiac calsequestrin (CASQ2), a high-capacity calcium-binding protein located in the sarcoplasmic reticulum (SR), have recently been linked to effort-induced ventricular arrhythmia and sudden death (catecholaminergic polymorphic ventricular tachycardia). However, the precise mechanisms through which these mutations affect SR function and lead to arrhythmia are presently unknown. In this study, we explored the effect of adenoviral-directed expression of a canine CASQ2 protein carrying the catecholaminergic polymorphic ventricular tachycardia–linked mutation D307H (CASQ2D307H) on Ca2+ signaling in adult rat myocytes. Total CASQ2 protein levels were consistently elevated ≈4-fold in cells infected with adenoviruses expressing either wild-type CASQ2 (CASQ2WT) or CASQ2D307H. Expression of CASQ2D307H reduced the Ca2+ storing capacity of the SR. In addition, the amplitude, duration, and rise time of macroscopic ICa-induced Ca2+ transients and of spontaneous Ca2+ sparks were reduced significantly in myocytes expressing CASQ2D307H. Myocytes expressing CASQ2D307H also displayed drastic disturbances of rhythmic oscillations in [Ca2+]i and membrane potential, with signs of delayed afterdepolarizations when undergoing periodic pacing and exposed to isoproterenol. Importantly, normal rhythmic activity was restored by loading the SR with the low-affinity Ca2+ buffer, citrate. Our data suggest that the arrhythmogenic CASQ2D307H mutation impairs SR Ca2+ storing and release functions and destabilizes the Ca2+-induced Ca2+ release mechanism by reducing the effective Ca2+ buffering inside the SR and/or by altering the responsiveness of the Ca2+ release channel complex to luminal Ca2+. These results establish at the cellular level the pathological link between CASQ2 mutations and the predisposition to adrenergically mediated arrhythmias observed in patients carrying CASQ2 defects.
The Journal of Physiology | 2007
Cecilia Paolini; Marco Quarta; Alessandra Nori; Simona Boncompagni; Marta Canato; Pompeo Volpe; Paul D. Allen; Carlo Reggiani; Feliciano Protasi
Calsequestrin (CS), the major Ca2+‐binding protein in the sarcoplasmic reticulum (SR), is thought to play a dual role in excitation–contraction coupling: buffering free Ca2+ increasing SR capacity, and modulating the activity of the Ca2+ release channels (RyRs). In this study, we generated and characterized the first murine model lacking the skeletal CS isoform (CS1). CS1‐null mice are viable and fertile, even though skeletal muscles appear slightly atrophic compared to the control mice. No compensatory increase of the cardiac isoform CS2 is detectable in any type of skeletal muscle. CS1‐null muscle fibres are characterized by structural and functional changes, which are much more evident in fast‐twitch muscles (EDL) in which most fibres express only CS1, than in slow‐twitch muscles (soleus), where CS2 is expressed in about 50% of the fibres. In isolated EDL muscle, force development is preserved, but characterized by prolonged time‐to‐peak and half‐relaxation time, probably related to impaired calcium release from and re‐uptake by the SR. Ca2+‐imaging studies show that the amount of Ca2+ released from the SR and the amplitude of the Ca2+ transient are significantly reduced. The lack of CS1 also causes significant ultrastructural changes, which include: (i) striking proliferation of SR junctional domains; (ii) increased density of Ca2+‐release channels (confirmed also by 3H‐ryanodine binding); (iii) decreased SR terminal cisternae volume; (iv) higher density of mitochondria. Taken together these results demonstrate that CS1 is essential for the normal development of the SR and its calcium release units and for the storage and release of appropriate amounts of SR Ca2+.
The Journal of General Physiology | 2008
Jia Qin; Giorgia Valle; Alma Nani; Alessandra Nori; Nicoletta Rizzi; Silvia G. Priori; Pompeo Volpe; Michael Fill
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)-linked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 muM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below approximately 0.5 mM.
Circulation Research | 2008
Nicoletta Rizzi; Nian Liu; Carlo Napolitano; Alessandra Nori; Federica Turcato; Barbara Colombi; Silvio Bicciato; Diego Arcelli; Alessandro Spedito; Mario Scelsi; Laura Villani; Giovanni Esposito; Simona Boncompagni; Feliciano Protasi; Pompeo Volpe; Silvia G. Priori
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disorder characterized by life threatening arrhythmias elicited by physical and emotional stress in young individuals. The recessive form of CPVT is associated with mutation in the cardiac calsequestrin gene (CASQ2). We engineered and characterized a homozygous CASQ2R33Q/R33Q mouse model that closely mimics the clinical phenotype of CPVT patients. CASQ2R33Q/R33Q mice develop bidirectional VT on exposure to environmental stress whereas CASQ2R33Q/R33Q myocytes show reduction of the sarcoplasmic reticulum (SR) calcium content, adrenergically mediated delayed (DADs) and early (EADs) afterdepolarizations leading to triggered activity. Furthermore triadin, junctin, and CASQ2-R33Q proteins are significantly decreased in knock-in mice despite normal levels of mRNA, whereas the ryanodine receptor (RyR2), calreticulin, phospholamban, and SERCA2a-ATPase are not changed. Trypsin digestion studies show increased susceptibility to proteolysis of mutant CASQ2. Despite normal histology, CASQ2R33Q/R33Q hearts display ultrastructural changes such as disarray of junctional electron-dense material, referable to CASQ2 polymers, dilatation of junctional SR, yet normal total SR volume. Based on the foregoings, we propose that the phenotype of the CASQ2R33Q/R33Q CPVT mouse model is portrayed by an unexpected set of abnormalities including (1) reduced CASQ2 content, possibly attributable to increased degradation of CASQ2-R33Q, (2) reduction of SR calcium content, (3) dilatation of junctional SR, and (4) impaired clustering of mutant CASQ2.
Biophysical Journal | 2008
Dmitry Terentyev; Zuzana Kubalova; Giorgia Valle; Alessandra Nori; Srikanth Vedamoorthyrao; Radmila Terentyeva; Serge Viatchenko-Karpinski; Donald M. Bers; Simon C. Williams; Pompeo Volpe; Sandor Gyorke
Cardiac calsequestrin (CASQ2) is an intrasarcoplasmic reticulum (SR) low-affinity Ca-binding protein, with mutations that are associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT). To better understand how CASQ2 mutants cause CPVT, we expressed two CPVT-linked CASQ2 mutants, a truncated protein (at G112+5X, CASQ2(DEL)) or CASQ2 containing a point mutation (CASQ2(R33Q)), in canine ventricular myocytes and assessed their effects on Ca handling. We also measured CASQ2-CASQ2 variant interactions using fluorescence resonance transfer in a heterologous expression system, and evaluated CASQ2 interaction with triadin. We found that expression of CASQ2(DEL) or CASQ2(R33Q) altered myocyte Ca signaling through two different mechanisms. Overexpressing CASQ2(DEL) disrupted the CASQ2 polymerization required for high capacity Ca binding, whereas CASQ2(R33Q) compromised the ability of CASQ2 to control ryanodine receptor (RyR2) channel activity. Despite profound differences in SR Ca buffering strengths, local Ca release terminated at the same free luminal [Ca] in control cells, cells overexpressing wild-type CASQ2 and CASQ2(DEL)-expressing myocytes, suggesting that a decline in [Ca](SR) is a signal for RyR2 closure. Importantly, disrupting interactions between the RyR2 channel and CASQ2 by expressing CASQ2(R33Q) markedly lowered the [Ca](SR) threshold for Ca release termination. We conclude that CASQ2 in the SR determines the magnitude and duration of Ca release from each SR terminal by providing both a local source of releasable Ca and by effects on luminal Ca-dependent RyR2 gating. Furthermore, two CPVT-inducing CASQ2 mutations, which cause mechanistically different defects in CASQ2 and RyR2 function, lead to increased diastolic SR Ca release events and exhibit a similar CPVT disease phenotype.
Trends in Neurosciences | 1988
Jacopo Meldolesi; Pompeo Volpe; Tullio Pozzan
Abstract For a long time, the study of calcium distribution in neurons was plagued by artifacts and technological problems. Major progress in the field has now been made using a variety of techniques, such as electronprobe X-ray microanalysis of unfixed, rapidly frozen sections, subcellular fractionation and cell permeabilization, and by recently introduced indirect approaches ([Ca 2+ ] i topology revealed by fluorescent dyes and photoproteins; immunocytochemistry of Ca 2+ -binding proteins). The present interest is focused primarily on rapidly exchanging Ca 2+ pools that are responsible for the generation of [Ca 2+ ] i transients. These pools might reside in organelles (calciosomes and possibly others) indistinguishable by conventional EM, but molecularly and functionally distinct from the elements of the smooth endoplasmic reticulum (SER).