Pongchai Harnyuttanakorn
Chulalongkorn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pongchai Harnyuttanakorn.
Malaria Journal | 2009
Tepanata Pumpaibool; Céline Arnathau; Patrick Durand; Naowarat Kanchanakhan; Napaporn Siripoon; Aree Suegorn; Chitr Sitthi-Amorn; François Renaud; Pongchai Harnyuttanakorn
BackgroundThe population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow.MethodsThe diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand.ResultsA strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 ± 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic structure of P. falciparum populations in Thailand with those in the French Guyana, Congo and Cameroon revealed a significant genetic differentiation between all of them, except the two African countries, whilst the genetic variability of P. falciparum amongst countries showed overlapping distributions.ConclusionPlasmodium falciparum shows genetically structured populations across local areas of Thailand. Although Thailand is considered to be a low transmission area, a relatively high level of genetic diversity and no linkage disequilibrium was found in five of the studied areas, the exception being the Yala province (Southern peninsular Thailand), where a clonal population structure was revealed and in Kanchanaburi province (Western Thailand). This finding is particularly relevant in the context of malaria control, because it could help in understanding the special dynamics of parasite populations in areas with different histories of, and exposure to, drug regimens.
Tetrahedron Letters | 2001
Tirayut Vilaivan; Chaturong Suparpprom; Pongchai Harnyuttanakorn; Gordon Lowe
Abstract Novel pyrrolidinyl peptide nucleic acids comprising alternate sequences of nucleobase-modified d -proline and β-amino acid spacers selected from l -aminopyrrolidine-2-carboxylic acid, d -aminopyrrolidine-2-carboxylic acid, (1 R ,2 S )-2-aminocyclopentane carboxylic acid and β-alanine were synthesized using solid phase methodology. Gel-binding shift assay revealed that only the homothymine PNA decamer bearing d -aminopyrrolidine-2-carboxylic acid spacer binds with (dA) 10 .
Bioorganic & Medicinal Chemistry Letters | 2000
Tirayut Vilaivan; Chanchai Khongdeesameor; Pongchai Harnyuttanakorn; Martin S. Westwell; Gordon Lowe
A synthon of D-proline substituted at the 4-position by thymine and at N by a flexible aminoethyl linker, has been used to prepare a novel chiral peptide nucleic acid (cPNA) with (2R,4R) stereochemistry using solid phase methodology. The homothymine decamer cPNA binds to complementary polyadenylic acid to form a 2:1 hybrid with high affinity and specificity according to UV and CD studies, whereas no binding to the corresponding polydeoxyadenylic acid was observed.
Parasitology Research | 2010
Mathirut Mungthin; Nantana Suwandittakul; Wanna Chaijaroenkul; Kanchana Rungsrihirunrat; Pongchai Harnyuttanakorn; Aree Seugorn; Kesara Na Bangchang
The study investigated the patterns of pfmdr1 and pfcrt genetic polymorphisms in Plasmodium falciaprum isolates collected from Thailand during the periods 1988-1993 (35 isolates), and 2003 (21 isolates). Pfcrt polymorphisms were almost universal for the mutations at codons K76T, A220S, Q271E, N326S, and R371I. All parasites displayed the chloroquine (CQ)-resistant phenotypes. This data suggested that pfcrt gene was sufficient to CQ resistance but did not mediate level of resistance. The prevalence [number of isolates (%)] of pfmdr1 polymorphisms at codons N86Y, Y184F, S1034C, N1042D and D1246Y were five (9%), 48 (86%), ten (18%), and 15 (27%), respectively. All isolates carried the wild-type nucleotide at position 1246. Results support the role of pfmdr1 in modulating susceptibilities of the P. falciparum to CQ, QN, and MQ. The frequencies of the S1034C and N1042D pfmdr1 polymorphisms and number of gene copy were significantly different in isolates collected during the two periods, with a trend of increasing prevalence of wild-type genotypes and number of gene copy from 1988 to 2003. The prominent pattern of pfmdr1 at codons 86/184/1034/1042/1246 was NFSND, with prevalence increasing from 40% to 95% during the 10-year period.
Malaria Journal | 2014
Phumin Simpalipan; Sittiporn Pattaradilokrat; Napaporn Siripoon; Aree Seugorn; Morakot Kaewthamasorn; Robert Dj Butcher; Pongchai Harnyuttanakorn
BackgroundThe 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (Pf MSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of Pf MSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, Pf MSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995. However, the extent of sequence variation and the spatiotemporal patterns of the MSP-119 haplotypes along the Thai borders with Laos and Cambodia are unknown.MethodsSixty-three isolates of P. falciparum from five geographically isolated populations along the Thai borders with Myanmar, Laos and Cambodia in three transmission seasons between 2002 and 2008 were collected and culture-adapted. The msp-1 gene block 17 was sequenced and analysed for the allelic diversity, frequency and distribution patterns of Pf MSP-119 haplotypes in individual populations. The Pf MSP-119 haplotype patterns were then compared between parasite populations to infer the population structure and genetic differentiation of the malaria parasite.ResultsFive conserved polymorphic positions, which accounted for five distinct haplotypes, of Pf MSP-119 were identified. Differences in the prevalence of Pf MSP-119 haplotypes were detected in different geographical regions, with the highest levels of genetic diversity being found in the Kanchanaburi and Ranong provinces along the Thailand-Myanmar border and Trat province located at the Thailand-Cambodia border. Despite this variability, the distribution patterns of individual Pf MSP-119 haplotypes seemed to be very similar across the country and over the three malarial transmission seasons, suggesting that gene flow may operate between parasite populations circulating in Thailand and the three neighboring countries.ConclusionThe major MSP-119 haplotypes of P. falciparum populations in all endemic populations during three transmission seasons in Thailand were identified, providing basic information on the common haplotypes of MSP-119 that is of use for malaria vaccine development and inferring the population structure of P. falciparum populations in Thailand.
Veterinary Parasitology | 2013
Rapeeporn Kumnuan; Sittiporn Pattaradilokrat; Kamlang Chumpolbanchorn; Suntorn Pimnon; Somphong Narkpinit; Pongchai Harnyuttanakorn; Tawee Saiwichai
Infection and transmission of the avian malaria parasite Plasmodium gallinaceum in domestic chickens is associated with high economic burden and presents a major challenge to poultry industry in South East Asia. Development of drugs targeting both asexual blood stage parasites and sexual stages of the avian malarias will be beneficial for malaria treatment and eradication. However, current drugs recommended for treatment of the avian malaria parasites target specifically the asexual blood stage parasites, but have little or no impact to the gametocytes, the major target for development of transmission-blocking strategies. In the present work, we established a simple procedure to evaluate gametocytocidal and transmission blocking activities in a P. gallinaceum-avian model. The assays involved administration of seven consecutive daily doses of test compounds into P. gallinaceum-infected chickens with 10% parasitaemia and 1% gametocytaemia. Our studies indicated that intramuscular injection with seven daily low doses (the minimum effective dose of 10mg/kg) of artesunate blocked the gametocyte production and transmission to the mosquito vector Aedes aegypti. This assay can be further applicable for testing new compounds against P. gallinaceum and for other parasitic protozoa infecting birds.
Tetrahedron Letters | 2003
Tirayut Vilaivan; Chaturong Suparpprom; Preeyanut Duanglaor; Pongchai Harnyuttanakorn; Gordon Lowe
Abstract Two novel pyrrolidinyl peptide nucleic acids comprising alternating sequences of thymine-modified d - or l -proline and an N -amino- N -methylglycine spacer were synthesized using solid-phase methodology. UV and CD titrations together with a gel-binding shift assay revealed that neither of the homothymine PNA decamers bind to their complementary DNA or RNA. This was considered to be due to an unfavorable secondary structure which could not be alleviated by the presence of the positively charged protonated amine in the PNA backbone.
Korean Journal of Parasitology | 2009
Nantana Suwandittakul; Wanna Chaijaroenkul; Pongchai Harnyuttanakorn; Mathirut Mungthin; Kesara Na Bangchang
The aim of the present study was to investigate antimalarial drug pressure resulting from the clinical use of different antimalarials in Thailand. The phenotypic diversity of the susceptibility profiles of antimalarials, i.e., chloroquine (CQ), quinine (QN), mefloquine (MQ), and artesunate (ARS) in Plasmodium falciparum isolates collected during the period from 1988 to 2003 were studied. P. falciparum isolates from infected patients were collected from the Thai-Cambodian border area at different time periods (1988-1989, 1991-1992, and 2003), during which 3 different patterns of drug use had been implemented: MQ + sulphadoxine (S) + pyrimethamine (P), MQ alone and MQ + ARS, respectively. The in vitro drug susceptibilities were investigated using a method based on the incorporation of [(3)H] hypoxanthine. A total of 50 isolates were tested for susceptibilities to CQ, QN, MQ, and ARS. Of these isolates, 19, 16, and 15 were adapted during the periods 1988-1989, 1991-1993, and 2003, respectively. P. falciparum isolates collected during the 3 periods were resistant to CQ. Sensitivities to MQ declined from 1988 to 2003. In contrast, the parasite was sensitive to QN, and similar sensitivity profile patterns were observed during the 3 time periods. There was a significantly positive but weak correlation between the IC(50) values of CQ and QN, as well as between the IC(50) values of QN and MQ. Drug pressure has impact on sensitivity of P. falciparum to MQ. A combination therapy of MQ and ARS is being applied to reduce the parasite resistance, and also increasing the efficacy of the drug.
Veterinary Parasitology | 2015
Sittiporn Pattaradilokrat; Wisawa Tiyamanee; Phumin Simpalipan; Morakot Kaewthamasorn; Tawee Saiwichai; Jian Li; Pongchai Harnyuttanakorn
Avian malaria is one of the most common veterinary problems in Southeast Asia. The standard molecular method for detection of the avian malaria parasite involves the phenol-chloroform extraction of parasite genomic (g)DNA followed by the amplification of parasite gDNA using polymerase chain reaction (PCR). However, the phenol-chloroform extraction method is time-consuming and requires large amounts of samples and toxic organic solvents, thereby limiting its applications for parasite detection in the field. This study aimed to compare the performance of chelex-100 resin and phenol/chloroform extraction methods for the extraction of Plasmodium gallinaceum gDNA from whole avian blood that had been dried on filter papers (a common field sampling method). The specificity and sensitivity of PCR assays for P. gallinaceum cytochrome B (cytb) and cytochrome oxidase subunit I (coxI) gene fragments (544 and 588bp, respectively) were determined, and found to be more sensitive with gDNA extracted by the chelex-100 resin method than with the phenol/chloroform method. These PCR assays were also performed to detect P. gallinaceum in 29 blood samples dried on filter papers from domestic chickens in a malaria endemic area, where the reliable identification of seven field isolates of P. gallinaceum was obtained with an accuracy of 100%. The analysis of cytb and coxI gene nucleotide sequences revealed the existence of at least two genetically distinct populations of P. gallinaceum in Thailand, both of which differed from the reference strain 8A of P. gallinaceum. In conclusion, the chelex-100 resin extraction method is a simple and sensitive method for isolating gDNA from whole avian blood dried on filter paper. Genomic DNA extracted by the chelex method could subsequently be applied for the PCR-based detection of P. gallinaceum and DNA sequencing. Our PCR assays provide a reliable diagnostic tool for molecular epidemiological studies of P. gallinaceum infections in domestic chickens and wild birds.
Malaria Journal | 2016
Sittiporn Pattaradilokrat; Vorthon Sawaswong; Phumin Simpalipan; Morakot Kaewthamasorn; Napaporn Siripoon; Pongchai Harnyuttanakorn
BackgroundAn effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown.MethodsThe msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (Fst) and neutrality tests (Tajima’s D, Fu and Li D* and Fu and Li’ F* tests) to determine any signature of selection.ResultsThe sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia.ConclusionThis study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.