Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sittiporn Pattaradilokrat is active.

Publication


Featured researches published by Sittiporn Pattaradilokrat.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality

Jian Wu; Linjie Tian; Xiao Yu; Sittiporn Pattaradilokrat; Jian Li; Mingjun Wang; Weishi Yu; Yanwei Qi; Amir E. Zeituni; Sethu C. Nair; Steve P. Crampton; Marlene Orandle; Silvia Bolland; Chen Feng Qi; Carole A. Long; Timothy G. Myers; John E. Coligan; Rongfu Wang; Xin-Zhuan Su

Significance Malaria infection causes a severe disease with diverse symptoms. The molecular mechanisms underlying the differences of malaria pathology remain unknown or controversial. Here we infected mice with two closely related strains of rodent malaria parasite Plasmodium yoelii and characterized host genome-wide responses to the infections. We found that in mice infected with parasite N67, type I interferon was produced to a high level, leading to suppression of parasitemia. We further characterized the molecular mechanisms and identified host receptors in recognizing parasite ligands. In contrast, mice infected with N67C parasite mounted a strong inflammatory response, leading to severe pathology and host death. This study reveals previously unrecognized mechanisms associated with strain-specific malaria infection and provides important information for studying human malaria pathogenesis. Malaria infection triggers vigorous host immune responses; however, the parasite ligands, host receptors, and the signaling pathways responsible for these reactions remain unknown or controversial. Malaria parasites primarily reside within RBCs, thereby hiding themselves from direct contact and recognition by host immune cells. Host responses to malaria infection are very different from those elicited by bacterial and viral infections and the host receptors recognizing parasite ligands have been elusive. Here we investigated mouse genome-wide transcriptional responses to infections with two strains of Plasmodium yoelii (N67 and N67C) and discovered differences in innate response pathways corresponding to strain-specific disease phenotypes. Using in vitro RNAi-based gene knockdown and KO mice, we demonstrated that a strong type I IFN (IFN-I) response triggered by RNA polymerase III and melanoma differentiation-associated protein 5, not Toll-like receptors (TLRs), binding of parasite DNA/RNA contributed to a decline of parasitemia in N67-infected mice. We showed that conventional dendritic cells were the major sources of early IFN-I, and that surface expression of phosphatidylserine on infected RBCs might promote their phagocytic uptake, leading to the release of parasite ligands and the IFN-I response in N67 infection. In contrast, an elevated inflammatory response mediated by CD14/TLR and p38 signaling played a role in disease severity and early host death in N67C-infected mice. In addition to identifying cytosolic DNA/RNA sensors and signaling pathways previously unrecognized in malaria infection, our study demonstrates the importance of parasite genetic backgrounds in malaria pathology and provides important information for studying human malaria pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2016

LAP-like process as an immune mechanism downstream of IFN-γ in control of the human malaria Plasmodium vivax liver stage

Rachasak Boonhok; Nattawan Rachaphaew; Apisak Duangmanee; Pornpimol Chobson; Sittiporn Pattaradilokrat; Pongsak Utaisincharoen; Jetsumon Sattabongkot; Marisa Ponpuak

Significance IFN-γ plays an important role in the elimination of liver-stage Plasmodium parasites, but the mechanism involved in this process is unclear. In this study, we demonstrate that IFN-γ treatment induces a noncanonical autophagy pathway in human hepatocytes dubbed an LC3-associated phagocytosis (LAP)-like process, in which the parasitophorous vacuole membrane of the parasites is decorated with LC3, resulting in the colocalization of parasite compartments with lysosomes. Downstream autophagy-related proteins are involved in this pathway, whereas the upstream autophagy-initiating protein is not. Our work shows that a LAP-like process serves as a previously unidentified downstream effector of IFN-γ in elimination of the liver-stage human malarial parasite Plasmodium vivax. IFN-γ is a major regulator of immune functions and has been shown to induce liver-stage Plasmodium elimination both in vitro and in vivo. The molecular mechanism responsible for the restriction of liver-stage Plasmodium downstream of IFN-γ remains uncertain, however. Autophagy, a newly described immune defense mechanism, was recently identified as a downstream pathway activated in response to IFN-γ in the control of intracellular infections. We thus hypothesized that the killing of liver-stage malarial parasites by IFN-γ involves autophagy induction. Our results show that whereas IFN-γ treatment of human hepatocytes activates autophagy, the IFN-γ–mediated restriction of liver-stage Plasmodium vivax depends only on the downstream autophagy-related proteins Beclin 1, PI3K, and ATG5, but not on the upstream autophagy-initiating protein ULK1. In addition, IFN-γ enhanced the recruitment of LC3 onto the parasitophorous vacuole membrane (PVM) and increased the colocalization of lysosomal vesicles with P. vivax compartments. Taken together, these data indicate that IFN-γ mediates the control of liver-stage P. vivax by inducing a noncanonical autophagy pathway resembling that of LC3-associated phagocytosis, in which direct decoration of the PVM with LC3 promotes the fusion of P. vivax compartments with lysosomes and subsequent killing of the pathogen. Understanding the hepatocyte response to IFN-γ during Plasmodium infection and the roles of autophagy-related proteins may provide an urgently needed alternative strategy for the elimination of this human malaria.


Malaria Journal | 2014

Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1

Phumin Simpalipan; Sittiporn Pattaradilokrat; Napaporn Siripoon; Aree Seugorn; Morakot Kaewthamasorn; Robert Dj Butcher; Pongchai Harnyuttanakorn

BackgroundThe 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (Pf MSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of Pf MSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, Pf MSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995. However, the extent of sequence variation and the spatiotemporal patterns of the MSP-119 haplotypes along the Thai borders with Laos and Cambodia are unknown.MethodsSixty-three isolates of P. falciparum from five geographically isolated populations along the Thai borders with Myanmar, Laos and Cambodia in three transmission seasons between 2002 and 2008 were collected and culture-adapted. The msp-1 gene block 17 was sequenced and analysed for the allelic diversity, frequency and distribution patterns of Pf MSP-119 haplotypes in individual populations. The Pf MSP-119 haplotype patterns were then compared between parasite populations to infer the population structure and genetic differentiation of the malaria parasite.ResultsFive conserved polymorphic positions, which accounted for five distinct haplotypes, of Pf MSP-119 were identified. Differences in the prevalence of Pf MSP-119 haplotypes were detected in different geographical regions, with the highest levels of genetic diversity being found in the Kanchanaburi and Ranong provinces along the Thailand-Myanmar border and Trat province located at the Thailand-Cambodia border. Despite this variability, the distribution patterns of individual Pf MSP-119 haplotypes seemed to be very similar across the country and over the three malarial transmission seasons, suggesting that gene flow may operate between parasite populations circulating in Thailand and the three neighboring countries.ConclusionThe major MSP-119 haplotypes of P. falciparum populations in all endemic populations during three transmission seasons in Thailand were identified, providing basic information on the common haplotypes of MSP-119 that is of use for malaria vaccine development and inferring the population structure of P. falciparum populations in Thailand.


Veterinary Parasitology | 2013

In vivo transmission blocking activities of artesunate on the avian malaria parasite Plasmodium gallinaceum

Rapeeporn Kumnuan; Sittiporn Pattaradilokrat; Kamlang Chumpolbanchorn; Suntorn Pimnon; Somphong Narkpinit; Pongchai Harnyuttanakorn; Tawee Saiwichai

Infection and transmission of the avian malaria parasite Plasmodium gallinaceum in domestic chickens is associated with high economic burden and presents a major challenge to poultry industry in South East Asia. Development of drugs targeting both asexual blood stage parasites and sexual stages of the avian malarias will be beneficial for malaria treatment and eradication. However, current drugs recommended for treatment of the avian malaria parasites target specifically the asexual blood stage parasites, but have little or no impact to the gametocytes, the major target for development of transmission-blocking strategies. In the present work, we established a simple procedure to evaluate gametocytocidal and transmission blocking activities in a P. gallinaceum-avian model. The assays involved administration of seven consecutive daily doses of test compounds into P. gallinaceum-infected chickens with 10% parasitaemia and 1% gametocytaemia. Our studies indicated that intramuscular injection with seven daily low doses (the minimum effective dose of 10mg/kg) of artesunate blocked the gametocyte production and transmission to the mosquito vector Aedes aegypti. This assay can be further applicable for testing new compounds against P. gallinaceum and for other parasitic protozoa infecting birds.


Veterinary Parasitology | 2015

Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand.

Sittiporn Pattaradilokrat; Wisawa Tiyamanee; Phumin Simpalipan; Morakot Kaewthamasorn; Tawee Saiwichai; Jian Li; Pongchai Harnyuttanakorn

Avian malaria is one of the most common veterinary problems in Southeast Asia. The standard molecular method for detection of the avian malaria parasite involves the phenol-chloroform extraction of parasite genomic (g)DNA followed by the amplification of parasite gDNA using polymerase chain reaction (PCR). However, the phenol-chloroform extraction method is time-consuming and requires large amounts of samples and toxic organic solvents, thereby limiting its applications for parasite detection in the field. This study aimed to compare the performance of chelex-100 resin and phenol/chloroform extraction methods for the extraction of Plasmodium gallinaceum gDNA from whole avian blood that had been dried on filter papers (a common field sampling method). The specificity and sensitivity of PCR assays for P. gallinaceum cytochrome B (cytb) and cytochrome oxidase subunit I (coxI) gene fragments (544 and 588bp, respectively) were determined, and found to be more sensitive with gDNA extracted by the chelex-100 resin method than with the phenol/chloroform method. These PCR assays were also performed to detect P. gallinaceum in 29 blood samples dried on filter papers from domestic chickens in a malaria endemic area, where the reliable identification of seven field isolates of P. gallinaceum was obtained with an accuracy of 100%. The analysis of cytb and coxI gene nucleotide sequences revealed the existence of at least two genetically distinct populations of P. gallinaceum in Thailand, both of which differed from the reference strain 8A of P. gallinaceum. In conclusion, the chelex-100 resin extraction method is a simple and sensitive method for isolating gDNA from whole avian blood dried on filter paper. Genomic DNA extracted by the chelex method could subsequently be applied for the PCR-based detection of P. gallinaceum and DNA sequencing. Our PCR assays provide a reliable diagnostic tool for molecular epidemiological studies of P. gallinaceum infections in domestic chickens and wild birds.


Malaria Journal | 2016

Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand

Sittiporn Pattaradilokrat; Vorthon Sawaswong; Phumin Simpalipan; Morakot Kaewthamasorn; Napaporn Siripoon; Pongchai Harnyuttanakorn

BackgroundAn effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown.MethodsThe msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (Fst) and neutrality tests (Tajima’s D, Fu and Li D* and Fu and Li’ F* tests) to determine any signature of selection.ResultsThe sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia.ConclusionThis study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.


Veterinary Parasitology | 2015

Effects of artesunate treatment on Plasmodium gallinaceum transmission in the vectors Aedes aegypti and Culex quinquefasciatus.

Mintra Pruck-Ngern; Sittiporn Pattaradilokrat; Kamlang Chumpolbanchorn; Suntorn Pimnon; Somphong Narkpinit; Pongchai Harnyuttanakorn; Prayute Buddhirakkul; Tawee Saiwichai

In the absence of vaccines, chemotherapy is an effective and economical way for controlling malaria. Development of anti-malarial drugs that target pathogenic blood stage parasites and gametocytes is preferable for the treatment as it can alleviate the hosts morbidity and mortality and block transmission of the Plasmodium parasite. Recently, our laboratory has developed an in vivo transmission blocking assay that involves administration of 7 consecutive daily doses of a test compound into domestic chickens (Gallus gallus domesticus) infected with the avian malaria parasite Plasmodium gallinaceum with 10% parasitaemia and 1% gametocytaemia. To compromise the cost and time for artesunate (ATN) treatment, this study aimed to investigate effects of a 5-day consecutive administration of 10 milligrams per kilogram (mg/kg) ATN on P. gallinaceum infection in chickens and transmission to two natural vectors, Aedes aegypti and Culex quinquefasciatus. Our study showed that the treatment with 10 mg/kg ATN for 7 days, but not 5 days, completely eliminated blood stage infections, prevented recrudescence and blocked gametocyte production and transmission of P. gallinaceum to its vectors, thereby confirming the potent schizontocidal and gametocytocidal activities of ATN. This regimen should be further evaluated in field trials.


Malaria Journal | 2018

Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum

Phumin Simpalipan; Sittiporn Pattaradilokrat; Pongchai Harnyuttanakorn

BackgroundAntigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide.MethodsThe ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships.ResultsNucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites.ConclusionsThis study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of LDH as a therapeutic drug target.


Veterinary Parasitology | 2017

Artesunate-tafenoquine combination therapy promotes clearance and abrogates transmission of the avian malaria parasite Plasmodium gallinaceum

Suchada Tasai; Tawee Saiwichai; Morakot Kaewthamasorn; Sonthaya Tiawsirisup; Prayute Buddhirakkul; Sirintip Chaichalotornkul; Sittiporn Pattaradilokrat

Clinical manifestations of malaria infection in vertebrate hosts arise from the multiplication of the asexual stage parasites in the blood, while the gametocytes are responsible for the transmission of the disease. Antimalarial drugs that target the blood stage parasites and transmissible gametocytes are rare, but are essentially needed for the effective control of malaria and for limiting the spread of resistance. Artemisinin and its derivatives are the current first-line antimalarials that are effective against the blood stage parasites and gametocytes, but resistance to artemisinin has now emerged and spread in various malaria endemic areas. Therefore, a novel antimalarial drug, or a new drug combination, is critically needed to overcome this problem. The objectives of this study were to evaluate the efficacy of a relatively new antimalarial compound, tafenoquine (TQ), and a combination of TQ and a low dose of artesunate (ATN) on the in vivo blood stage multiplication, gametocyte development and transmission of the avian malaria parasite Plasmodium gallinaceum to the vector Aedes aegypti. The results showed that a 5-d treatment with TQ alone was unable to clear the blood stage parasites, but was capable of reducing the mortality rate, while TQ monotherapy at a high dose of 30mg/kg was highly effective against the gametocytes and completely blocked the transmission of P. gallinaceum. In addition, the combination therapy of TQ+ATN completely cleared P. gallinaceum blood stages and sped up the gametocyte clearance from chickens, suggesting the synergistic effect of the two drugs. In conclusion, TQ is demonstrated to be effective for limiting avian malaria transmission and may be used in combination with a low dose of ATN for safe and effective treatment.


Infection, Genetics and Evolution | 2016

In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.

Suthat Phaiphinit; Sittiporn Pattaradilokrat; Chidchanok Lursinsap; Kitiporn Plaimas

Detoxification of hemoglobin byproducts or free heme is an essential step and considered potential targets for anti-malaria drug development. However, most of anti-malaria drugs are no longer effective due to the emergence and spread of the drug resistant malaria parasites. Therefore, it is an urgent need to identify potential new targets and even for target combinations for effective malaria drug design. In this work, we reconstructed the metabolic networks of Plasmodium falciparum and human red blood cells for the simulation of steady mass and flux flows of the parasites metabolites under the blood environment by flux balance analysis (FBA). The integrated model, namely iPF-RBC-713, was then adjusted into two stage-specific metabolic models, which first was for the pathological stage metabolic model of the parasite when invaded the red blood cell without any treatment and second was for the treatment stage of the parasite when a drug acted by inhibiting the hemozoin formation and caused high production rate of heme toxicity. The process of identifying target combinations consisted of two main steps. Firstly, the optimal fluxes of reactions in both the pathological and treatment stages were computed and compared to determine the change of fluxes. Corresponding enzymes of the reactions with zero fluxes in the treatment stage but non-zero fluxes in the pathological stage were predicted as a preliminary list of potential targets in inhibiting heme detoxification. Secondly, the combinations of all possible targets listed in the first step were examined to search for the best promising target combinations resulting in more effective inhibition of the detoxification to kill the malaria parasites. Finally, twenty-three enzymes were identified as a preliminary list of candidate targets which mostly were in pyruvate metabolism and citrate cycle. The optimal set of multiple targets for blocking the detoxification was a set of heme ligase, adenosine transporter, myo-inositol 1-phosphate synthase, ferrodoxim reductase-like protein and guanine transporter. In conclusion, the method has shown an effective and efficient way to identify target combinations which are obviously useful in the development of novel antimalarial drug combinations.

Collaboration


Dive into the Sittiporn Pattaradilokrat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge