Pooja Desai
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pooja Desai.
The Journal of Nuclear Medicine | 2015
Christian Lohrmann; Hanwen Zhang; Daniel L. J. Thorek; Pooja Desai; Pat Zanzonico; Joseph O'Donoghue; Christopher Irwin; Thomas Reiner; Jan Grimm; Wolfgang A. Weber
90Y has been used to label various new therapeutic radiopharmaceuticals. However, measuring the radiation dose delivered by 90Y is challenging because of the absence of suitable γ emissions and its low abundance of positron emissions. For the treatment of prostate cancer, radiolabeled gastrin-releasing peptide receptor (GRPr) antagonists have yielded promising results in mouse models. In this study, we evaluated whether Cerenkov luminescence imaging (CLI) could be used to determine radiation doses of a 90Y-labeled GRPr antagonist in nude mice. Methods: Mice bearing subcutaneous prostate cancer xenografts were injected with 0.74–18.5 MBq of the 90Y-labeled GRPr antagonist DOTA-AR and underwent in vivo and ex vivo CLI at 1–48 h after injection. After imaging, animals were sacrificed, their tumors and organs were harvested, and the activity concentration was measured by liquid scintillation counting. In a second set of experiments, Cerenkov photon counts for tumor and kidney on in vivo CLI were converted to activity concentrations using conversion factors determined from the first set of experiments. Results: 90Y-DOTA-AR concentration in the 3 tumor models ranged from 0.5% to 4.8% of the injected activity per gram at 1 h after injection and decreased to 0.05%–0.15 injected activity per gram by 48 h after injection. A positive correlation was found between tumor activity concentrations and in vivo CLI signal (r2 = 0.94). A similar correlation was found for the renal activity concentration and in vivo Cerenkov luminescence (r2 = 0.98). Other organs were not distinctly visualized on the in vivo images, but ex vivo CLI was also correlated with the radioactivity concentration (r2 = 0.35–0.94). Using the time–activity curves from the second experiment, we calculated radiation doses to tumor and kidney of 0.33 ± 0.12 (range, 0.21–0.66) and 0.06 ± 0.01 (range, 0.05–0.08) Gy/MBq, respectively. Conclusion: CLI is a promising, low-cost modality to measure individual radiation doses of 90Y-labeled compounds noninvasively. The use of Cerenkov imaging is expected to facilitate the development and comparison of 90Y-labeled compounds for targeted radiotherapy.
Neoplasia | 2014
Christopher Irwin; Yasiri Portorreal; Christian Brand; Yachao Zhang; Pooja Desai; Beatriz Salinas; Wolfgang A. Weber; Thomas Reiner
New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.
The Journal of Nuclear Medicine | 2017
Hanwen Zhang; Pooja Desai; Yusuke Koike; Jacob L. Houghton; Sean Carlin; Nidhi Tandon; Karim Touijer; Wolfgang A. Weber
Gastrin-releasing peptide (GRP) receptors (GRPr) are frequently overexpressed in human prostate cancer, and radiolabeled GRPr affinity ligands have shown promise for in vivo imaging of prostate cancer with PET. The goal of this study was to develop a dual-modality imaging probe that can be used for noninvasive PET imaging and optical imaging of prostate cancer. Methods: We designed and synthesized an IRDye 650 and DOTA-conjugated GRPr antagonist, HZ220 (DOTA-Lys(IRDye 650)-PEG4-[D-Phe6, Sta13]-BN(6-14)NH2), by reacting DOTA-Lys-PEG4-[D-Phe6, Sta13]-BN(6-14)NH2 (HZ219) with IRDye 650 N-hydroxysuccinimide (NHS) ester. Receptor-specific binding of gallium-labeled HZ220 was characterized in PC-3 prostate cancer cells (PC-3), and tumor uptake in mice was imaged with PET/CT and fluorescence imaging. Receptor binding affinity, in vivo tumor uptake, and biodistribution were compared with the GRPr antagonists HZ219, DOTA-PEG4-[D-Phe6, Sta13]-BN(6-14)NH2 (DOTA-AR), and DOTA-(4-amino-1-carboxymethyl-piperidine)-[D-Phe6, Sta13]-BN(6-14)NH2 (DOTA-RM2). Results: After hydrophilic–lipophilic balance cartridge purification, 68Ga-HZ220 was obtained with a radiochemical yield of 56% ± 8% (non–decay-corrected), and the radiochemical purity was greater than 95%. Ga-HZ220 had a lower affinity for GRPr (inhibitory concentration of 50% [IC50], 21.4 ± 7.4 nM) than Ga-DOTA-AR (IC50, 0.48 ± 0.18 nM) or Ga-HZ219 (IC50, 0.69 ± 0.18 nM). Nevertheless, 68Ga-HZ220 had an in vivo tumor accumulation similar to 68Ga-DOTA-AR (4.63 ± 0.31 vs. 4.07 ± 0.29 percentage injected activity per mL [%IA/mL] at 1 h after injection) but lower than that of 68Ga-DOTA-RM2 (10.4 ± 0.4 %IA/mL). The tumor uptake of 68Ga-HZ220 was blocked significantly with an excessive amount of GRP antagonists. IVIS spectrum imaging also visualized PC-3 xenografts in vivo and ex vivo with a high-contrast ratio. Autoradiography and fluorescent-based microscopic imaging with 68Ga-HZ220 consistently colocated the expression of GRPr. 68Ga-HZ220 displayed a higher kidney uptake than both 68Ga-DOTA-AR and 68Ga-DOTA-RM2 (16.9 ± 6.5 vs. 4.48 ± 1.63 vs. 5.01 ± 2.29 %IA/mL). Conclusion: 68Ga-HZ220 is a promising bimodal ligand for noninvasive PET imaging and intraoperative optical imaging of GRPr-expressing malignancies. Bimodal nuclear/fluorescence imaging may not only improve cancer detection and guide surgical resections, but also improve our understanding of the uptake of GRPr ligands on the cellular level.
Clinical Cancer Research | 2017
Kwanghee Kim; Hanwen Zhang; Stephen LaRosa; Sylvia Jebiwott; Pooja Desai; Simon Kimm; Avigdor Scherz; Joseph O'Donoghue; Wolfgang A. Weber; Jonathan A. Coleman
Purpose: DOTA-AR, a bombesin-antagonist peptide, has potential clinical application for targeted imaging and therapy in gastrin-releasing peptide receptor (GRPr)–positive malignancies when conjugated with a radioisotope such as 90Y. This therapeutic potential is limited by the fast washout of the conjugates from the target tumors. WST-11 (Weizmann STeba-11 drug; a negatively charged water-soluble palladium-bacteriochlorophyll derivative, Tookad Soluble) vascular targeted photodynamic therapy (VTP) is a local ablation approach recently approved for use in early-stage prostate cancer. It generates reactive oxygen/nitrogen species within tumor blood vessels, resulting in their instantaneous destruction followed by rapid tumor necrosis. We hypothesize that the instantaneous arrest of tumor vasculature may provide a means to trap radiopharmaceuticals within the tumor, thereby improving the efficacy of targeted radiotherapy. Experimental Design: GRPr-positive prostate cancer xenografts (PC-3 and VCaP) were treated with 90Y-DOTA-AR with or without VTP. The uptake of radioisotopes was monitored by Cherenkov luminescence imaging (CLI). The therapeutic efficacy of the combined VTP and 90Y-DOTA-AR in PC-3 xenografts was assessed. Results: CLI of 90Y-DOTA-AR demonstrated longer retention of radiotracer within the VTP-treated PC-3 xenografts compared with the non–VTP-treated ones (P < 0.05) at all time points (24–144 hours) after 90Y-DOTA-AR injection. A similar pattern of retention was observed in VCaP xenografts. When 90Y-DOTA-AR administration was combined with VTP, tumor growth delay was significantly longer than for the control or the monotherapy groups. Conclusions: Tumor vascular arrest by VTP improves 90Y-DOTA-AR retention in the tumor microenvironment thereby enhancing therapeutic efficacy. Clin Cancer Res; 23(13); 3343–51. ©2017 AACR.
EJNMMI research | 2015
Andreas Paulus; Pooja Desai; Brandon Carney; Giuseppe Carlucci; Thomas Reiner; Christian Brand; Wolfgang A. Weber
BackgroundFluorescent imaging agents are becoming evermore important in preclinical and clinical research. They do, however, suffer from poor tissue penetration, which makes optical fluorescence imaging incompatible with whole-body imaging techniques. The design of novel bimodal PET active and fluorescent tracers could therefore combine the benefits of optical imaging with radioactively labeled imaging probes. Herein, we report the synthesis and evaluation of a clickable 18F-labeled fluorescent dye.MethodsAn azide-modified BODIPY-Fl dye could be successfully radio-labeled with 18F using an 18F/19F exchange reaction of the boron-fluoride core of the BODIPY dye to yield a clickable bimodal PET/fluorescent imaging tool. In vitro as well as in vivo imaging (PET/fluorescence) using a bombesin analog was conducted to study the applicability of the dual-modality imaging probe.ResultsWe use the radio-labeled small molecule, 18F-BODIPY-azide to label site-specifically different targeted peptides, based on a standard modular labeling protocol. Following the synthesis of a bimodal bombesin analog, we determine the peptide tracer’s performance in vitro and in vivo, exploring both the optical as well as PET imaging capabilities.ConclusionThis versatile methodology has the potential to have a transformational impact on 18F radiotracer synthesis, opening the door for rapid screening of novel-labeled peptide tracers, both on the cellular (optical) as well as whole-body (PET) level.
Bioconjugate Chemistry | 2018
Hanwen Zhang; Ananda Kumar Kanduluru; Pooja Desai; Afruja Ahad; Sean Carlin; Nidhi Tandon; Wolfgang A. Weber; Philip S. Low
Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64Cu (or 67Ga for in vitro studies) in the presence of CH3COONH4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/μmol for 64Cu and >5.0 GBq/μmol for 67Ga. Both 64Cu- and 67Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [64Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [64Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [64Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.
Molecular Imaging and Biology | 2017
James A. Russell; Nagavarakishore Pillarsetty; Robin M. Kramer; Paul B. Romesser; Pooja Desai; Adriana Haimovitz-Friedman; Maeve Aine Lowery; John L. Humm
The Journal of Nuclear Medicine | 2015
Sean Carlin; Hanwen Zhang; Nidhi Tandon; Pooja Desai; Anupama Gandhi; Wolfgang A. Weber
The Journal of Nuclear Medicine | 2015
Hanwen Zhang; Ananda Kumar Kanduluru; Pooja Desai; Sean Carlin; Nidhi Tandon; Wolfgang A. Weber; Philip S. Low
The Journal of Nuclear Medicine | 2014
Yachao Zhang; Christian Brand; Pooja Desai; Dalya Abdel-Atti; Wolfgang A. Weber; Thomas Reiner