Poul Georg Moses
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Poul Georg Moses.
Journal of Physics: Condensed Matter | 2010
J. Enkovaara; C. Rostgaard; Jens Jørgen Mortensen; Jingzhe Chen; Marcin Dulak; Lara Ferrighi; Jeppe Gavnholt; Christian Glinsvad; V. Haikola; Heine Anton Hansen; Henrik H. Kristoffersen; M. Kuisma; Ask Hjorth Larsen; L. Lehtovaara; Mathias P. Ljungberg; Olga Lopez-Acevedo; Poul Georg Moses; J. Ojanen; Thomas Olsen; Vivien Gabriele Petzold; Nichols A. Romero; Stausholm-Møller J; Mikkel Strange; Georgios Tritsaris; Marco Vanin; Michael Walter; Bjørk Hammer; Hannu Häkkinen; Georg K. H. Madsen; Risto M. Nieminen
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, ΔSCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals.
Faraday Discussions | 2009
Jacob Bonde; Poul Georg Moses; Thomas F. Jaramillo; Jens K. Nørskov; Ib Chorkendorff
The hydrogen evolution reaction (HER) on carbon supported MoS2 nanoparticles is investigated and compared to findings with previously published work on Au(111) supported MoS2. An investigation into MoS2 oxidation is presented and used to quantify the surface concentration of MoS2. Other metal sulfides with morphologies similar to MoS2 such as WS2, cobalt-promoted WS2, and cobalt-promoted MoS2 were also investigated in the search for improved HER activity. Experimental findings are compared to density functional theory (DFT) calculated values for the hydrogen binding energies (deltaGH) on each system.
Angewandte Chemie | 2008
Eva M. Fernández; Poul Georg Moses; Anja Toftelund; Heine Anton Hansen; José I. Martínez; Frank Abild-Pedersen; Jesper Kleis; Berit Hinnemann; Jan Rossmeisl; Thomas Bligaard; Jens K. Nørskov
There has been substantial progress in the description of adsorption and chemical reactions of simple molecules on transition-metal surfaces. Adsorption energies and activation energies have been obtained for a number of systems, and complete catalytic reactions have been described in some detail. Considerable progress has also been made in the theoretical description of the interaction of molecules with transition-metal oxides, sulfides, and nitrides, but it is considerably more complicated to describe such complex systems theoretically. Complications arise from difficulties in describing the stoichiometry and structure of such surfaces, and from possible shortcomings in the use of ordinary generalized gradient approximation (GGA) type density functional theory (DFT). Herein we introduce a method that may facilitate the description of the bonding of gas molecules to transitionmetal oxides, sulfides, and nitrides. It was recently found that there are a set of scaling relationhips between the adsorption energies of different partially hydrogenated intermediates on transition-metal surfaces. We will show that similar scaling relationships exist for adsorption on transition metal oxide, sulfide, and nitride surfaces. This means that knowing the adsorption energy for one transition-metal complex will make it possible to quite easily generate data for a number of other complexes, and in this way obtain reactivity trends. The results presented herein have been calculated using self-consistent DFT. Exchange and correlation effects are described using the revised Perdew–Burke–Ernzerhof (RPBE) GGA functional. It is known that GGA functionals give adsorption energies with reasonable accuracy for transition metals. It is not clear, however, whether a similar accuracy can be expected for the oxides, sulfides, and nitrides, although there are examples of excellent agreement betweenDFT calculations and experiments, for example, with RuO2 surfaces. [9] In our study we focused entirely on variations in the adsorption energies from one system to another, and we expected that such results would be less dependent than the absolute adsorption energies on the description of exchange and correlation. For the nitrides, a clean surface and a surface with a nitrogen vacancy were studied. For MX2-type oxides or sulfides, an oxygenor sulfur-covered surface with an oxygen or sulfur vacancy was studied. The structures of the clean surface considered in the present work and their unit cells are shown in Figure 1. The adsorption energies given below are for the adsorbed species in the most stable adsorption site on the surface. By performing calculations for a large number of transition-metal surfaces of different orientations, it was found that the adsorption energy of intermediates of the type AHx is linearly correlated with the adsorption energy of atom A (N, O, S) according to Equation (1):
Angewandte Chemie | 2014
Sebastian Kuld; Christian Nagstrup Conradsen; Poul Georg Moses; Ib Chorkendorff; Jens Sehested
Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent picture of surface alloying between copper and zinc. This analysis enables a reinterpretation of the methods that have been used for the determination of the Cu surface area and provides an opportunity to independently quantify the specific Cu and Zn areas. This method may also be applied to other systems where metal-support interactions are important, and this work generally addresses the role of the carrier and the nature of the interactions between carrier and metal in heterogeneous catalysts.
Journal of Chemical Physics | 2009
Poul Georg Moses; Jens Jørgen Mortensen; Bengt I. Lundqvist; Jens K. Nørskov
Accurate calculations of adsorption energies of cyclic molecules are of key importance in investigations of, e.g., hydrodesulfurization (HDS) catalysis. The present density functional theory (DFT) study of a set of important reactants, products, and inhibitors in HDS catalysis demonstrates that van der Waals interactions are essential for binding energies on MoS(2) surfaces and that DFT with a recently developed exchange-correlation functional (vdW-DF) accurately calculates the van der Waals energy. Values are calculated for the adsorption energies of butadiene, thiophene, benzothiophene, pyridine, quinoline, benzene, and naphthalene on the basal plane of MoS(2), showing good agreement with available experimental data, and the equilibrium geometry is found as flat at a separation of about 3.5 A for all studied molecules. This adsorption is found to be due to mainly van der Waals interactions. Furthermore, the manifold of adsorption-energy values allows trend analyses to be made, and they are found to have a linear correlation with the number of main atoms.
Angewandte Chemie | 2014
Yuanyuan Zhu; Quentin M. Ramasse; Michael Brorson; Poul Georg Moses; Lars P. Hansen; C. Kisielowski; Stig Helveg
The functional properties of transition metal dichalcogenides (TMDs) may be promoted by the inclusion of other elements. Here, we studied the local stoichiometry of single cobalt promoter atoms in an industrial-style MoS2-based hydrotreating catalyst. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy show that the Co atoms occupy sites at the (-100) S edge terminations of the graphite-supported MoS2 nanocrystals in the catalyst. Specifically, each Co atom has four neighboring S atoms that are arranged in a reconstructed geometry, which reflects an equilibrium state. The structure agrees with complementary studies of catalysts that were prepared under vastly different conditions and on other supports. In contrast, a small amount of residual Fe in the graphite is found to compete for the S edge sites, so that promotion by Co is strongly sensitive to the purity of the raw materials. The present single-atom-sensitive analytical method therefore offers a guide for advancing preparative methods for promoted TMD nanomaterials.
Journal of Physics: Condensed Matter | 2008
Berit Hinnemann; Poul Georg Moses; Jens K. Nørskov
The present article will highlight some recent density functional theory (DFT) studies of hydrodesulfurization (HDS) catalysts. It will be summarized how DFT in combination with experimental studies can give a detailed picture of the structure of the active phase. Furthermore, we have used DFT to investigate the reaction pathway for thiophene HDS, and we find that the reaction entails a complex interplay of different active sites, depending on reaction conditions. An investigation of pyridine inhibition confirmed some of these results. These fundamental insights constitute a basis for rational improvement of HDS catalysts, as they have provided important structure-activity relationships.
Angewandte Chemie | 2015
Dominik Bjørn Rasmussen; Jakob Munkholt Christensen; Burcin Temel; Felix Studt; Poul Georg Moses; Jan Rossmeisl; Anders Riisager; Anker Degn Jensen
Unprecedented insight into the carbonylation of dimethyl ether over Mordenite is provided through the identification of ketene (CH2CO) as a reaction intermediate. The formation of ketene is predicted by detailed DFT calculations and verified experimentally by the observation of doubly deuterated acetic acid (CH2DCOOD), when D2O is introduced in the feed during the carbonylation reaction.
Chemcatchem | 2016
Samira Siahrostami; Hanne Falsig; Pablo Beato; Poul Georg Moses; Jens K. Nørskov; Felix Studt
Copper exchange on all the different T sites of ZSM‐22 and ZSM‐5 is considered and the chemisorption energies of dioxygen, OH, and O species are studied. We show that for different T sites the adsorption energies vary significantly. The oxygen adsorption energy on copper‐exchanged zeolites is quite similar to those of the most selective catalysts for oxidation reactions, that is, Ag and Au surfaces. The chemisorption energies of oxygen, carbon‐, and nitrogen‐containing species on different transition metals exchanged in ZSM‐22 are also investigated. The study covers three different oxidation states, that is, 1+, 2+, and 3+ for the transition‐metal exchanges. Scaling relations are presented for the corresponding species. Chemisorption of O scales with chemisorption of OH for all three considered exchanges, whereas there are essentially rough correlations for NH2 and N as well as CH3 and C.
Nature Communications | 2017
Martin Ek; Quentin M. Ramasse; Logi Arnarson; Poul Georg Moses; Stig Helveg
Surface redox processes involving oxygen atom exchange are fundamental in catalytic reactions mediated by metal oxides. These processes are often difficult to uncover due to changes in the surface stoichiometry and atomic arrangement. Here we employ high-resolution transmission electron microscopy to study vanadium oxide supported on titanium dioxide, which is of relevance as a catalyst in, e.g., nitrogen oxide emission abatement for environmental protection. The observations reveal a reversible transformation of the vanadium oxide surface between an ordered and disordered state, concomitant with a reversible change in the vanadium oxidation state, when alternating between oxidizing and reducing conditions. The transformation depends on the anatase titanium dioxide surface termination and the vanadium oxide layer thickness, suggesting that the properties of vanadium oxide are sensitive to the supporting oxide. These atomic-resolution observations offer a basis for rationalizing previous reports on shape-sensitive catalytic properties.Redox processes in metal oxide surfaces can exhibit structure sensitivities which are difficult to uncover. Here, the authors use atomic-resolution imaging to demonstrate facet dependent alterations in the surfaces of supported vanadium oxide upon reduction and oxidation.