Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pp Gao is active.

Publication


Featured researches published by Pp Gao.


NeuroImage | 2014

Brain resting-state functional MRI connectivity: Morphological foundation and plasticity

Iy Zhou; Y Liang; Russell W. Chan; Pp Gao; Joseph S. Cheng; Yong Hu; Kf So

Despite the immense ongoing efforts to map brain functional connections and organizations with resting-state functional MRI (rsfMRI), the mechanisms governing the temporally coherent rsfMRI signals remain unclear. In particular, there is a lack of direct evidence regarding the morphological foundation and plasticity of these rsfMRI derived connections. In this study, we investigated the role of axonal projections in rsfMRI connectivity and its plasticity. Well-controlled rodent models of complete and posterior corpus callosotomy were longitudinally examined with rsfMRI at 7T in conjunction with intracortical EEG recording and functional MRI tracing of interhemispheric neuronal pathways by manganese (Mn(2+)). At post-callosotomy day 7, significantly decreased interhemispheric rsfMRI connectivity was observed in both groups in the specific cortical areas whose callosal connections were severed. At day 28, the disrupted connectivity was restored in the partial callosotomy group but not in the complete callosotomy group, likely due to the compensation that occurred through the remaining interhemispheric axonal pathways. This restoration - along with the increased intrahemispheric functional connectivity observed in both groups at day 28 - highlights the remarkable adaptation and plasticity in brain rsfMRI connections. These rsfMRI findings were paralleled by the intracortical EEG recording and Mn(2+) tracing results. Taken together, our experimental results directly demonstrate that axonal connections are the indispensable foundation for rsfMRI connectivity and that such functional connectivity can be plastic and dynamically reorganized atop the morphological connections.


NeuroImage | 2014

The inferior colliculus is involved in deviant sound detection as revealed by BOLD fMRI

Pp Gao; Jw Zhang; Joseph S. Cheng; Iy Zhou

Rapid detection of deviant sounds is a crucial property of the auditory system because it increases the saliency of biologically important, unexpected sounds. The oddball paradigm in which a deviant sound is randomly interspersed among a train of standard sounds has been traditionally used to study this property in mammals. Currently, most human studies have only revealed the involvement of cortical regions in this property. Recently, several animal electrophysiological studies have reported that neurons in the inferior colliculus (IC) exhibit reduced responses to a standard sound but restore their responses at the occurrence of a deviant sound (i.e., stimulus-specific adaptation or SSA), suggesting that the IC may also be involved in deviance detection. However, by adopting an invasive method, these animal studies examined only a limited number of neurons. Although SSA appears to be more prominent in the external cortical nuclei of the IC for frequency deviant, a thorough investigation of this property throughout the IC using other deviants and efficient imaging techniques may provide more comprehensive information on this important phenomenon. In this study, blood-oxygen-level-dependent (BOLD) fMRI with a large field of view was applied to investigate the role of the IC in deviance detection. Two sound tokens that had identical frequency spectrum but temporally inverted profiles were used as the deviant and standard. A control experiment showed that these two sounds evoked the same responses in the IC when they were separately presented. Two oddball experiments showed that the deviant induced higher responses than the standard (by 0.41±0.09% and 0.41±0.10%, respectively). The most activated voxels were in the medial side of the IC in both oddball experiments. The results clearly demonstrated that the IC is involved in deviance detection. BOLD fMRI detection of increased activities in the medial side of the IC to the deviant revealed the highly adaptive nature of a substantial population of neurons in this region, probably those that belong to the rostral or dorsal cortex of the IC. These findings highlighted the complexity of auditory information processing in the IC and may guide future studies of the functional organizations of this subcortical structure.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity

Russell W. Chan; Alex T. L. Leong; Leon C. Ho; Pp Gao; Eddie Wong; Celia M. Dong; Xunda Wang; Jufang He; Ying-Shing Chan; Lee Wei Lim

Significance The hippocampus with its dense reciprocal axonal projections to and from cortex is widely believed to mediate numerous cognitive functions. However, it is unknown whether and how specific hippocampal–cortical activity contributes to the brain-wide functional connectivity. Here, we use optogenetics and fMRI to examine how excitatory neural activity initiated in the dorsal dentate gyrus of the hippocampus propagates and modulates resting-state fMRI (rsfMRI) connectivity. We discover its robust propagation brain-wide at low frequency (1 Hz), which enhances interhemispheric rsfMRI connectivity and cortical and subcortical visual responses. Our findings highlight the important role of slow hippocampal–cortical oscillatory activity in driving brain-wide rsfMRI connectivity and mediating sensory processing. The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal–cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal–cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal–cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Long-range projections coordinate distributed brain-wide neural activity with a specific spatiotemporal profile

Alex T. L. Leong; Russell W. Chan; Pp Gao; Ying-Shing Chan; Kevin K. Tsia; Wing-Ho Yung

Significance What makes the brain tick? A simple yet challenging question that has captivated our minds for centuries. This sentiment was fittingly reflected in the launch of The BRAIN Initiative 3 years ago, spurred by the rapid advancement of noninvasive brain imaging and neuronal mapping technologies that have advanced our understanding of neural networks, which are central to brain functions and behavior. Here, we study the patterns of large-scale brain-wide interactions mediated by thalamo-cortical networks through optogenetics and functional MRI. We found that the thalamus can recruit long-range cortical and subcortical networks and initiate their interactions in a spatiotemporally specific manner. This finding provides a fresh impetus to study the mysteries of the brain. One challenge in contemporary neuroscience is to achieve an integrated understanding of the large-scale brain-wide interactions, particularly the spatiotemporal patterns of neural activity that give rise to functions and behavior. At present, little is known about the spatiotemporal properties of long-range neuronal networks. We examined brain-wide neural activity patterns elicited by stimulating ventral posteromedial (VPM) thalamo-cortical excitatory neurons through combined optogenetic stimulation and functional MRI (fMRI). We detected robust optogenetically evoked fMRI activation bilaterally in primary visual, somatosensory, and auditory cortices at low (1 Hz) but not high frequencies (5–40 Hz). Subsequent electrophysiological recordings indicated interactions over long temporal windows across thalamo-cortical, cortico-cortical, and interhemispheric callosal projections at low frequencies. We further observed enhanced visually evoked fMRI activation during and after VPM stimulation in the superior colliculus, indicating that visual processing was subcortically modulated by low-frequency activity originating from VPM. Stimulating posteromedial complex thalamo-cortical excitatory neurons also evoked brain-wide blood-oxygenation-level–dependent activation, although with a distinct spatiotemporal profile. Our results directly demonstrate that low-frequency activity governs large-scale, brain-wide connectivity and interactions through long-range excitatory projections to coordinate the functional integration of remote brain regions. This low-frequency phenomenon contributes to the neural basis of long-range functional connectivity as measured by resting-state fMRI.


NeuroImage | 2015

BOLD fMRI study of ultrahigh frequency encoding in the inferior colliculus

Pp Gao; Jw Zhang; Russell W. Chan; Alex T. L. Leong

Many vertebrates communicate with ultrahigh frequency (UHF) vocalizations to limit auditory detection by predators. The mechanisms underlying the neural encoding of such UHF sounds may provide important insights for understanding neural processing of other complex sounds (e.g. human speeches). In the auditory system, sound frequency is normally encoded topographically as tonotopy, which, however, contains very limited representation of UHFs in many species. Instead, electrophysiological studies suggested that two neural mechanisms, both exploiting the interactions between frequencies, may contribute to UHF processing. Neurons can exhibit excitatory or inhibitory responses to a tone when another UHF tone is presented simultaneously (combination sensitivity). They can also respond to such stimulation if they are tuned to the frequency of the cochlear-generated distortion products of the two tones, e.g. their difference frequency (cochlear distortion). Both mechanisms are present in an early station of the auditory pathway, the midbrain inferior colliculus (IC). Currently, it is unclear how prevalent the two mechanisms are and how they are functionally integrated in encoding UHFs. This study investigated these issues with large-view BOLD fMRI in rat auditory system, particularly the IC. UHF vocalizations (above 40kHz), but not pure tones at similar frequencies (45, 55, 65, 75kHz), evoked robust BOLD responses in multiple auditory nuclei, including the IC, reinforcing the sensitivity of the auditory system to UHFs despite limited representation in tonotopy. Furthermore, BOLD responses were detected in the IC when a pair of UHF pure tones was presented simultaneously (45 & 55kHz, 55 & 65kHz, 45 & 65kHz, 45 & 75kHz). For all four pairs, a cluster of voxels in the ventromedial side always showed the strongest responses, displaying combination sensitivity. Meanwhile, voxels in the dorsolateral side that showed strongest secondary responses to each pair of UHF pure tones also showed the strongest responses to a pure tone at their difference frequency, suggesting that they are sensitive to cochlear distortion. These BOLD fMRI results indicated that combination sensitivity and cochlear distortion are employed by large but spatially distinctive neuron populations in the IC to represent UHFs. Our imaging findings provided insights for understanding sound feature encoding in the early stage of the auditory pathway.


PLOS ONE | 2015

Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI

Russell W. Chan; Leon C. Ho; Iy Zhou; Pp Gao; Kevin C Chan

Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.


NeuroImage | 2015

Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

Pp Gao; Jw Zhang; Sj Fan; Dan H. Sanes

The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical gain modulation is mediated primarily through direct projections and they point to future investigations of the differential roles of the direct and indirect projections in corticofugal modulation. In summary, our imaging findings demonstrate the large-scale descending influences, from both the auditory and visual cortices, on sound processing in different IC subdivisions. They can guide future studies on the coordinated activity across multiple regions of the auditory network, and its dysfunctions.


Progress in Electromagnetics Research-pier | 2013

The Serial Resonant Antenna for the Large Field of View Magnetic Resonance Imaging

Bo O. Zhu; Pp Gao; Peng Cao; Li Jun Jiang

A serial resonant antenna for the large fleld of view (FOV) magnetic resonance imaging (MRI) is presented. It consists of metallic patches cascaded through lumped capacitors in serial on the top layer of a grounded dielectric substrate. The theoretical analysis show that at the resonant frequency, uniformly distributed current with zero phase delay is produced independent of the antenna length, hence a uniform magnetic fleld for large FOV MRI can be achieved. Integrated with the L-shaped tunable matching network, the antenna can be tuned easily to operate rigorously at the working frequency of the MRI system. The numerical modeling, physical fabrication and measurement, as well as the phantom imaging are carried out to design, characterize and verify the performance of the proposed antenna for MRI.


PLOS ONE | 2014

Resting-State fMRI Using Passband Balanced Steady- State Free Precession

Joseph S. Cheng; Pp Gao; Iy Zhou; Russell W. Chan; Queenie Chan; Henry Ka-Fung Mak; Pek L. Khong

Objective Resting-state functional MRI (rsfMRI) has been increasingly used for understanding brain functional architecture. To date, most rsfMRI studies have exploited blood oxygenation level-dependent (BOLD) contrast using gradient-echo (GE) echo planar imaging (EPI), which can suffer from image distortion and signal dropout due to magnetic susceptibility and inherent long echo time. In this study, the feasibility of passband balanced steady-state free precession (bSSFP) imaging for distortion-free and high-resolution rsfMRI was investigated. Methods rsfMRI was performed in humans at 3 T and in rats at 7 T using bSSFP with short repetition time (TR = 4/2.5 ms respectively) in comparison with conventional GE-EPI. Resting-state networks (RSNs) were detected using independent component analysis. Results and Significance RSNs derived from bSSFP images were shown to be spatially and spectrally comparable to those derived from GE-EPI images with considerable intra- and inter-subject reproducibility. High-resolution bSSFP images corresponded well to the anatomical images, with RSNs exquisitely co-localized to the gray matter. Furthermore, RSNs at areas of severe susceptibility such as human anterior prefrontal cortex and rat piriform cortex were proved accessible. These findings demonstrated for the first time that passband bSSFP approach can be a promising alternative to GE-EPI for rsfMRI. It offers distortion-free and high-resolution RSNs and is potentially suited for high field studies.


Scientific Reports | 2018

Optogenetic auditory fMRI reveals the effects of visual cortical inputs on auditory midbrain response

Alex T. L. Leong; Celia M. Dong; Pp Gao; Russell W. Chan; Anthea To; Dan H. Sanes

Sensory cortices contain extensive descending (corticofugal) pathways, yet their impact on brainstem processing – particularly across sensory systems – remains poorly understood. In the auditory system, the inferior colliculus (IC) in the midbrain receives cross-modal inputs from the visual cortex (VC). However, the influences from VC on auditory midbrain processing are unclear. To investigate whether and how visual cortical inputs affect IC auditory responses, the present study combines auditory blood-oxygenation-level-dependent (BOLD) functional MRI (fMRI) with cell-type specific optogenetic manipulation of visual cortex. The results show that predominant optogenetic excitation of the excitatory pyramidal neurons in the infragranular layers of the primary VC enhances the noise-evoked BOLD fMRI responses within the IC. This finding reveals that inputs from VC influence and facilitate basic sound processing in the auditory midbrain. Such combined optogenetic and auditory fMRI approach can shed light on the large-scale modulatory effects of corticofugal pathways and guide detailed electrophysiological studies in the future.

Collaboration


Dive into the Pp Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jw Zhang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Js Cheng

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Sj Fan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Dan H. Sanes

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leon C. Ho

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge