Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prab Prabhakar is active.

Publication


Featured researches published by Prab Prabhakar.


Nature Genetics | 2012

Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature

Gillian I. Rice; Paul R. Kasher; Gabriella M.A. Forte; Niamh M. Mannion; Sam M. Greenwood; Marcin Szynkiewicz; Jonathan E. Dickerson; Sanjeev Bhaskar; Massimiliano Zampini; Tracy A. Briggs; Emma M. Jenkinson; Carlos A. Bacino; Roberta Battini; Enrico Bertini; Paul A. Brogan; Louise Brueton; Marialuisa Carpanelli; Corinne De Laet; Pascale de Lonlay; Mireia del Toro; Isabelle Desguerre; Elisa Fazzi; Angels García-Cazorla; Arvid Heiberg; Masakazu Kawaguchi; Ram Kumar; Jean-Pierre Lin; Charles Marques Lourenço; Alison Male; Wilson Marques

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


Nature Genetics | 2012

Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus

Beverley Anderson; Paul R. Kasher; Josephine Mayer; Marcin Szynkiewicz; Emma M. Jenkinson; Sanjeev Bhaskar; Jill Urquhart; Sarah B. Daly; Jonathan E. Dickerson; James O'Sullivan; Elisabeth Oppliger Leibundgut; Joanne Muter; Ghada M H Abdel-Salem; Riyana Babul-Hirji; Peter Baxter; Andrea Berger; Luisa Bonafé; Janice E Brunstom-Hernandez; Johannes A Buckard; David Chitayat; Wk Chong; Duccio Maria Cordelli; Patrick Ferreira; Joel Victor Fluss; Ewan H. Forrest; Emilio Franzoni; Caterina Garone; Simon Hammans; Gunnar Houge; Imelda Hughes

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.


American Journal of Human Genetics | 2013

Mutations in DARS Cause Hypomyelination with Brain Stem and Spinal Cord Involvement and Leg Spasticity

Ryan J. Taft; Adeline Vanderver; Richard J. Leventer; Stephen Damiani; Cas Simons; Sean M. Grimmond; David Miller; Johanna L. Schmidt; Paul J. Lockhart; Kate Pope; Kelin Ru; Joanna Crawford; Tena Rosser; Irenaeus F.M. de Coo; Monica Juneja; Ishwar C. Verma; Prab Prabhakar; Susan Blaser; Julian Raiman; Petra J. W. Pouwels; Marianna R. Bevova; Truus E. M. Abbink; Marjo S. van der Knaap; Nicole I. Wolf

Inherited white-matter disorders are a broad class of diseases for which treatment and classification are both challenging. Indeed, nearly half of the children presenting with a leukoencephalopathy remain without a specific diagnosis. Here, we report on the application of high-throughput genome and exome sequencing to a cohort of ten individuals with a leukoencephalopathy of unknown etiology and clinically characterized by hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL), as well as the identification of compound-heterozygous and homozygous mutations in cytoplasmic aspartyl-tRNA synthetase (DARS). These mutations cause nonsynonymous changes to seven highly conserved amino acids, five of which are unchanged between yeast and man, in the DARS C-terminal lobe adjacent to, or within, the active-site pocket. Intriguingly, HBSL bears a striking resemblance to leukoencephalopathy with brain stem and spinal cord involvement and elevated lactate (LBSL), which is caused by mutations in the mitochondria-specific DARS2, suggesting that these two diseases might share a common underlying molecular pathology. These findings add to the growing body of evidence that mutations in tRNA synthetases can cause a broad range of neurologic disorders.


Journal of Medical Genetics | 2011

Phenotypic spectrum associated with CASK loss-of-function mutations

Ute Moog; Kerstin Kutsche; Fanny Kortüm; Bettina Chilian; Tatjana Bierhals; Neophytos Apeshiotis; Stefanie Balg; Nicolas Chassaing; Christine Coubes; Soma Das; Hartmut Engels; Hilde Van Esch; Ute Grasshoff; Marisol Heise; Bertrand Isidor; Joanna Jarvis; Udo Koehler; Thomas Martin; Barbara Oehl-Jaschkowitz; Els Ortibus; Daniela T. Pilz; Prab Prabhakar; Gudrun Rappold; Isabella Rau; Günther Rettenberger; Gregor Schlüter; Richard H. Scott; Moonef Shoukier; Eva Wohlleber; Birgit Zirn

Background Heterozygous mutations in the CASK gene in Xp11.4 have been shown to be associated with a distinct brain malformation phenotype in females, including disproportionate pontine and cerebellar hypoplasia. Methods The study characterised the CASK alteration in 20 new female patients by molecular karyotyping, fluorescence in situ hybridisation, sequencing, reverse transcriptase (RT) and/or quantitative real-time PCR. Clinical and brain imaging data of a total of 25 patients were reviewed. Results 11 submicroscopic copy number alterations, including nine deletions of ∼11 kb to 4.5 Mb and two duplications, all covering (part of) CASK, four splice, four nonsense, and one 1 bp deletion are reported. These heterozygous CASK mutations most likely lead to a null allele. Brain imaging consistently showed diffuse brainstem and cerebellar hypoplasia with a dilated fourth ventricle, but of remarkably varying degrees. Analysis of 20 patients in this study, and five previously reported patients, revealed a core clinical phenotype comprising severe developmental delay/intellectual disability, severe postnatal microcephaly, often associated with growth retardation, (axial) hypotonia with or without hypertonia of extremities, optic nerve hypoplasia, and/or other eye abnormalities. A recognisable facial phenotype emerged, including prominent and broad nasal bridge and tip, small or short nose, long philtrum, small chin, and/or large ears. Conclusions These findings define the phenotypic spectrum associated with CASK loss-of-function mutations. The combination of developmental and brain imaging features together with mild facial dysmorphism is highly suggestive of this disorder and should prompt subsequent testing of the CASK gene.


Pediatric Neurology | 2011

Clinical Neuroimaging Features and Outcome in Molybdenum Cofactor Deficiency

Kayal Vijayakumar; Rox Gunny; Stephanie Grunewald; Lucinda Carr; Kling Chong; Catherine DeVile; Robert Robinson; Niamh McSweeney; Prab Prabhakar

Molybdenum cofactor deficiency predominantly affects the central nervous system. There are limited data on long-term outcome or brain magnetic resonance imaging (MRI) features. We examined the clinical, brain MRI, biochemical, genetic, and electroencephalographic features and outcome in 8 children with a diagnosis of molybdenum cofactor deficiency observed in our institution over 10 years. Two modes of presentation were identified: early (classical) onset with predominantly epileptic encephalopathy in 6 neonates, and late (atypical) with global developmental impairment in 2 children. Children in both groups had varying degrees of motor, language, and visual impairment. There were no deaths. Brain MRI demonstrated cerebral infarction in all but one child in the atypical group. Distinctive features were best observed on early brain MRI: acute symmetrical involvement of the globus pallidi and subthalamic regions coexisting with older cerebral hemisphere infarction, chronic lesions suggestive of a prenatal insult, pontocerebellar hypoplasia with retrocerebellar cyst, and presence of a distinctive band at the cortical/subcortical white matter. Sequential imaging revealed progressive pontine atrophy and enlargement of retrocerebellar cyst. The brain MRI of one child with atypical presentation (verbal dyspraxia, lens dislocation) showed symmetrical cerebellar deep nuclei signal abnormality without cerebral infarction. Imaging pattern on early brain MRI (<1 week) may prompt the diagnosis, potentially allowing early treatment and disease modifications.


Nature Genetics | 2017

Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia

Esther Meyer; Keren J. Carss; Julia Rankin; John M E Nichols; Detelina Grozeva; Agnel Praveen Joseph; Niccolo E. Mencacci; Apostolos Papandreou; Joanne Ng; Serena Barral; Adeline Ngoh; M.A.A.P. Willemsen; David Arkadir; Angela Barnicoat; Hagai Bergman; Sanjay Bhate; Amber Boys; Niklas Darin; Nicola Foulds; Nicholas Gutowski; Alison Hills; Henry Houlden; Jane A. Hurst; Zvi Israel; Margaret Kaminska; Patricia Limousin; Daniel E. Lumsden; Shane McKee; Shibalik Misra; Ss Mohammed

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.


Nature Genetics | 2016

Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts

Emma M. Jenkinson; Mathieu P. Rodero; Paul R. Kasher; Carolina Uggenti; Anthony Oojageer; Laurence C. Goosey; Yoann Rose; Christopher J. Kershaw; Jill Urquhart; Simon G Williams; Sanjeev Bhaskar; James O'Sullivan; Monika Haubitz; Geraldine Aubert; Kristin Barañano; Angela Barnicoat; Roberta Battini; Andrea Berger; Edward Blair; Janice E. Brunstrom-Hernandez; Johannes A Buckard; David Cassiman; Rosaline Caumes; Duccio Maria Cordelli; Liesbeth De Waele; Alexander Fay; Patrick Ferreira; Nicholas A. Fletcher; Alan Fryer; Himanshu Goel

Although ribosomes are ubiquitous and essential for life, recent data indicate that monogenic causes of ribosomal dysfunction can confer a remarkable degree of specificity in terms of human disease phenotype. Box C/D small nucleolar RNAs (snoRNAs) are evolutionarily conserved non-protein-coding RNAs involved in ribosome biogenesis. Here we show that biallelic mutations in the gene SNORD118, encoding the box C/D snoRNA U8, cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts (LCC), presenting at any age from early childhood to late adulthood. These mutations affect U8 expression, processing and protein binding and thus implicate U8 as essential in cerebral vascular homeostasis.


Developmental Medicine & Child Neurology | 2012

Safety and efficacy of flunarizine in childhood migraine: 11 years' experience, with emphasis on its effect in hemiplegic migraine.

Basheer Peer Mohamed; Peter J. Goadsby; Prab Prabhakar

Aim  The aim of this study was to report a single‐centre experience of flunarizine in childhood migraine with focus on safety and efficacy.


Neuropediatrics | 2014

Leukoencephalopathy with calcifications and cysts: a purely neurological disorder distinct from coats plus.

John H. Livingston; Josephine Mayer; Emma M. Jenkinson; Paul R. Kasher; Stavros Stivaros; Andrea Berger; Duccio Maria Cordelli; Patrick Ferreira; Rosalind Jefferson; Georg Kutschke; Staffan Lundberg; Katrin Õunap; Prab Prabhakar; Calvin Soh; Helen Stewart; Jennifer Stone; Marjo S. van der Knaap; Hilda van Esch; Christine van Mol; Emma Wakeling; Andrea Whitney; Gillian I Rice; Yanick J. Crow

OBJECTIVE With the identification of mutations in the conserved telomere maintenance component 1 (CTC1) gene as the cause of Coats plus (CP) disease, it has become evident that leukoencephalopathy with calcifications and cysts (LCC) is a distinct genetic entity. PATIENTS AND METHODS A total of 15 patients with LCC were identified from our database of patients with intracranial calcification. The clinical and radiological features are described. RESULTS The median age (range) at presentation was 10 months (range, 2 days-54 years). Of the 15 patients, 9 presented with epileptic seizures, 5 with motor abnormalities, and 1 with developmental delay. Motor abnormalities developed in 14 patients and cognitive problems in 13 patients. Dense calcification occurred in the basal ganglia, thalami, dentate nucleus, brain stem, deep gyri, deep white matter, and in a pericystic distribution. Diffuse leukoencephalopathy was present in all patients, and it was usually symmetrical involving periventricular, deep, and sometimes subcortical, regions. Cysts developed in the basal ganglia, thalamus, deep white matter, cerebellum, or brain stem. In unaffected areas, normal myelination was present. No patient demonstrated cerebral atrophy. CONCLUSION LCC shares the neuroradiological features of CP. However, LCC is a purely neurological disorder distinguished genetically by the absence of mutations in CTC1. The molecular cause(s) of LCC has (have) not yet been determined.


Brain | 2016

EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy

Susan Byrne; Lara Jansen; Jean Marie U-King-im; Ata Siddiqui; Hart G.W. Lidov; Istvan Bodi; Luke Smith; Rachael Mein; Thomas Cullup; Carlo Dionisi-Vici; Lihadh Al-Gazali; Mohammed Al-Owain; Zandre Bruwer; Khalid Al Thihli; Rana El-Garhy; Kevin M. Flanigan; Kandamurugu Manickam; Erik Zmuda; Wesley Banks; Ruth Gershoni-Baruch; Hanna Mandel; Efrat Dagan; Annick Raas-Rothschild; Hila Barash; Francis M. Filloux; Donnell J. Creel; Michael Harris; Ada Hamosh; Stefan Kölker; Darius Ebrahimi-Fakhari

Vici syndrome is a progressive neurodevelopmental multisystem disorder caused by mutations in the autophagy gene EPG5. Byrne et al. characterise the phenotype of 50 affected children, revealing callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, immune dysfunction, developmental delay and microcephaly. Downregulation of epg5 in Drosophila results in autophagic abnormalities and progressive neurodegeneration.

Collaboration


Dive into the Prab Prabhakar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Kasher

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Berger

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Patrick Ferreira

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Apostolos Papandreou

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Esther Meyer

University College London

View shared research outputs
Top Co-Authors

Avatar

Henry Houlden

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Joanne Ng

Great Ormond Street Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge