Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prabha Sampath is active.

Publication


Featured researches published by Prabha Sampath.


Cell Stem Cell | 2008

A Hierarchical Network Controls Protein Translation during Murine Embryonic Stem Cell Self-Renewal and Differentiation

Prabha Sampath; David K. Pritchard; Lil Pabon; Hans Reinecke; Stephen M. Schwartz; David R. Morris; Charles E. Murry

Stem cell differentiation involves changes in transcription, but little is known about translational control during differentiation. We comprehensively profiled gene expression during differentiation of murine embryonic stem cells (ESCs) into embryoid bodies by integrating transcriptome analysis with global assessment of ribosome loading. While protein synthesis was parsimonious during self-renewal, differentiation induced an anabolic switch, with global increases in transcript abundance, polysome content, protein synthesis, and protein content. Furthermore, 78% of transcripts showed increased ribosome loading, thereby enhancing translational efficiency. Transcripts under exclusive translational control included the transcription factor ATF5, the tumor suppressor DCC, and the beta-catenin agonist Wnt1. We show that a hierarchy of translational regulators, including mTOR, 4EBP1, and the RNA-binding proteins DAZL and GRSF1, control global and selective protein synthesis during ESC differentiation. Parsimonious translation in pluripotent state and hierarchical translational regulation during differentiation may be important quality controls for self-renewal and choice of fate in ESCs.


Nature | 2013

‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing

Gopinath M. Sundaram; John E.A. Common; Felicia Gopal; Satyanarayana Srikanta; Krishnaswamy Lakshman; Declan P. Lunny; Thiam Chye Lim; Vivek Tanavde; E. Birgitte Lane; Prabha Sampath

Post-transcriptional switches are flexible effectors of dynamic changes in gene expression. Here we report a new post-transcriptional switch that dictates the spatiotemporal and mutually exclusive expression of two alternative gene products from a single transcript. Expression of primate-specific exonic microRNA-198 (miR-198), located in the 3′-untranslated region of follistatin-like 1 (FSTL1) messenger RNA, switches to expression of the linked open reading frame of FSTL1 upon wounding in a human ex vivo organ culture system. We show that binding of a KH-type splicing regulatory protein (KSRP, also known as KHSRP) to the primary transcript determines the fate of the transcript and is essential for the processing of miR-198: transforming growth factor-β signalling switches off miR-198 expression by downregulating KSRP, and promotes FSTL1 protein expression. We also show that FSTL1 expression promotes keratinocyte migration, whereas miR-198 expression has the opposite effect by targeting and inhibiting DIAPH1, PLAU and LAMC2. A clear inverse correlation between the expression pattern of FSTL1 (pro-migratory) and miR-198 (anti-migratory) highlights the importance of this regulatory switch in controlling context-specific gene expression to orchestrate wound re-epithelialization. The deleterious effect of failure of this switch is apparent in non-healing chronic diabetic ulcers, in which expression of miR-198 persists, FSTL1 is absent, and keratinocyte migration, re-epithelialization and wound healing all fail to occur.


Molecular and Cellular Biology | 2003

Transcript-Selective Translational Silencing by Gamma Interferon Is Directed by a Novel Structural Element in the Ceruloplasmin mRNA 3′ Untranslated Region

Prabha Sampath; Barsanjit Mazumder; Vasudevan Seshadri; Paul L. Fox

ABSTRACT Transcript-selective translational control of eukaryotic gene expression is often directed by a structural element in the 3′ untranslated region (3′-UTR) of the mRNA. In the case of ceruloplasmin (Cp), induced synthesis of the protein by gamma interferon (IFN-γ) in U937 monocytic cells is halted by a delayed translational silencing mechanism requiring the binding of a cytosolic inhibitor to the Cp 3′-UTR. Silencing requires the essential elements of mRNA circularization, i.e., eukaryotic initiation factor 4G, poly(A)-binding protein, and poly(A) tail. We here determined the minimal silencing element in the Cp 3′-UTR by progressive deletions from both termini. A minimal, 29-nucleotide (nt) element was determined by gel shift assay to be sufficient for maximal binding of the IFN-γ-activated inhibitor of translation (GAIT), an as-yet-unidentified protein or complex. The interaction was shown to be functional by an in vitro translation assay in which the GAIT element was used as a decoy to overcome translational silencing. Mutation analysis showed that the GAIT element contained a 5-nt terminal loop, a weak 3-bp helix, an asymmetric internal bulge, and a proximal 6-bp helical stem. Two invariant loop residues essential for binding activity were identified. Ligation of the GAIT element immediately downstream of a luciferase reporter conferred the translational silencing response to the heterologous transcript in vitro and in vivo; a construct containing a nonbinding, mutated GAIT element was ineffective. Translational silencing of Cp, and possibly other transcripts, mediated by the GAIT element may contribute to the resolution of the local inflammatory response following cytokine activation of macrophages.


Cell Reports | 2012

Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas.

Xin Hui Derryn Chan; Srikanth Nama; Felicia Gopal; Pamela Rizk; Srinivas Ramasamy; Gopinath M. Sundaram; Ghim Siong Ow; Ivshina Anna Vladimirovna; Vivek Tanavde; Johannes Haybaeck; Vladimir A. Kuznetsov; Prabha Sampath

Malignant gliomas are the most aggressive forms of brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs) that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138) as a molecular signature of GSCs and demonstrate a vital role for miR-138 in promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in vitro and impedes tumorigenesis in vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas.


BMC Genomics | 2014

HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome.

Aliaksandr A. Yarmishyn; Arsen O Batagov; Jovina Z Tan; Gopinath M. Sundaram; Prabha Sampath; Vladimir A. Kuznetsov; Igor V. Kurochkin

BackgroundLong noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies.ResultsWe developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer.ConclusionsOur findings greatly extend the number of noncoding RNAs functionally implicated in tumor development and patient treatment and highlight their role as potential prognostic biomarkers of neuroblastomas.


Scientific Reports | 2015

Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress

Antonis Giannakakis; Jingxian Zhang; Piroon Jenjaroenpun; Srikanth Nama; Norliyana Zainolabidin; Mei Yee Aau; Aliaksandr A. Yarmishyn; Candida Vaz; Anna V. Ivshina; Oleg V. Grinchuk; Mathijs Voorhoeve; Leah Vardy; Prabha Sampath; Vladimir A. Kuznetsov; Igor V. Kurochkin; Ernesto Guccione

Oxidative stress (OS) is caused by an imbalance between pro- and anti-oxidant reactions leading to accumulation of reactive oxygen species within cells. We here investigate the effect of OS on the transcriptome of human fibroblasts. OS causes a rapid and transient global induction of transcription characterized by pausing of RNA polymerase II (PolII) in both directions, at specific promoters, within 30 minutes of the OS response. In contrast to protein-coding genes, which are commonly down-regulated, this novel divergent, PolII pausing-phenomenon leads to the generation of thousands of long noncoding RNAs (lncRNAs) with promoter-associated antisense lncRNAs transcripts (si-paancRNAs) representing the major group of stress-induced transcripts. OS causes transient dynamics of si-lncRNAs in nucleus and cytosol, leading to their accumulation at polysomes, in contrast to mRNAs, which get depleted from polysomes. We propose that si-lncRNAs represent a novel component of the transcriptional stress that is known to determine the outcome of immediate-early and later cellular stress responses and we provide insights on the fate of those novel mature lncRNA transcripts by showing that their association with polysomal complexes is significantly increased in OS.


Journal of Experimental Medicine | 2017

EGF hijacks miR-198/FSTL1 wound-healing switch and steers a two-pronged pathway toward metastasis

Gopinath M. Sundaram; Hisyam M. Ismail; Mohsin Bashir; Manish Muhuri; Candida Vaz; Srikanth Nama; Ghim Siong Ow; Ivshina Anna Vladimirovna; Rajkumar Ramalingam; Brian Burke; Vivek Tanavde; Vladimir A. Kuznetsov; E. Birgitte Lane; Prabha Sampath

Epithelial carcinomas are well known to activate a prolonged wound-healing program that promotes malignant transformation. Wound closure requires the activation of keratinocyte migration via a dual-state molecular switch. This switch involves production of either the anti-migratory microRNA miR-198 or the pro-migratory follistatin-like 1 (FSTL1) protein from a single transcript; miR-198 expression in healthy skin is down-regulated in favor of FSTL1 upon wounding, which enhances keratinocyte migration and promotes re-epithelialization. Here, we reveal a defective molecular switch in head and neck squamous cell carcinoma (HNSCC). This defect shuts off miR-198 expression in favor of sustained FSTL1 translation, driving metastasis through dual parallel pathways involving DIAPH1 and FSTL1. DIAPH1, a miR-198 target, enhances directional migration through sequestration of Arpin, a competitive inhibitor of Arp2/3 complex. FSTL1 blocks Wnt7a-mediated repression of extracellular signal–regulated kinase phosphorylation, enabling production of MMP9, which degrades the extracellular matrix and facilitates metastasis. The prognostic significance of the FSTL1-DIAPH1 gene pair makes it an attractive target for therapeutic intervention.


Current protocols in stem cell biology | 2011

Identifying Translationally Regulated Genes During Stem Cell Differentiation

Prabha Sampath; Qian Yi Lee; Vivek Tanavde

This unit describes a protocol for genome-wide identification of translationally regulated genes during embryonic stem cell differentiation using integrated transcriptome and translation state profiling. Actively translated mRNAs associated with multiple ribosomes (known as polysomes) and translationally inactive mRNAs sequestered in messenger ribonucleoprotein particles (mRNPs), can be separated by sucrose gradient fractionation based on size. Because the number of ribosomes on a transcript correlates with the rate of synthesis of its encoded protein, this allows an operational distinction between well-translated and poorly translated mRNA molecules. In this analysis, fractionated mRNA and total RNA are used to probe microarrays to identify differentially translated genes.


Development | 2018

Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal to zygotic transition

Cecilia Lanny Winata; Maciej Łapiński; Leszek P. Pryszcz; Candida Vaz; Muhammad Hisyam bin Ismail; Srikanth Nama; Hajira Shreen Hajan; Serene Gek Ping Lee; Vladimir Korzh; Prabha Sampath; Vivek Tanavde; Sinnakaruppan Mathavan

ABSTRACT In the earliest stages of animal development following fertilization, maternally deposited mRNAs direct biological processes to the point of zygotic genome activation (ZGA). These maternal mRNAs undergo cytoplasmic polyadenylation (CPA), suggesting translational control of their activation. To elucidate the biological role of CPA during embryogenesis, we performed genome-wide polysome profiling at several stages of zebrafish development. Our analysis revealed a correlation between CPA and polysome-association dynamics, demonstrating a coupling of translation to the CPA of maternal mRNAs. Pan-embryonic CPA inhibition disrupted the maternal-to-zygotic transition (MZT), causing a failure of developmental progression beyond the mid-blastula transition and changes in global gene expression that indicated a failure of ZGA and maternal mRNA clearance. Among the genes that were differentially expressed were those encoding chromatin modifiers and key transcription factors involved in ZGA, including nanog, pou5f3 and sox19b, which have distinct CPA dynamics. Our results establish the necessity of CPA for ensuring progression of the MZT. The RNA-seq data generated in this study represent a valuable zebrafish resource for the discovery of novel elements of the early embryonic transcriptome. Summary: Genome-wide polysome profiling reveals that developmental progression through the maternal-to-zygotic transition in zebrafish depends on the precise translational activation of a subset of maternal mRNAs by cytoplasmic polyadenylation.


Nature Communications | 2018

HoxC5 and miR-615-3p target newly evolved genomic regions to repress hTERT and inhibit tumorigenesis.

TingDong Yan; Wen Fong Ooi; Aditi Qamra; Alice Cheung; DongLiang Ma; Gopinath M. Sundaram; Chang Xu; Manjie Xing; Lai-Fong Poon; Jing Wang; Yan Ping Loh; Jess Hui Jie Ho; Joscelyn Jun Quan Ng; Muhammad Khairul Ramlee; Luay Aswad; Steve Rozen; Sujoy Ghosh; Frederic Bard; Prabha Sampath; Vinay Tergaonkar; James O. J. Davies; Jim R. Hughes; Eyleen Goh; Xuezhi Bi; Melissa J. Fullwood; Patrick Tan; Shang Li

The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hTERT expression. mir-615-3p is located in an intron of the HOXC5 gene, a member of the highly conserved homeobox family of transcription factors controlling embryogenesis and development. Unexpectedly, we found that HoxC5 also represses hTERT expression by disrupting the long-range interaction between hTERT promoter and its distal enhancer. The 3′UTR of hTERT and its upstream enhancer region are well conserved in long-lived primates. Both mir-615-3p and HOXC5 are activated upon differentiation, which constitute a feed-forward loop that coordinates transcriptional and post-transcriptional repression of hTERT during cellular differentiation. Deregulation of HOXC5 and mir-615-3p expression may contribute to the activation of hTERT in human cancers.The expression of telomerase catalytic subunit hTERT is frequently upregulated in many cancers. Here, the authors show HoxC5 and miR-615-3p can negatively regulate hTERT to impede tumorigenesis by targeting the newly evolved cis-regulatory genomic elements of hTERT.

Collaboration


Dive into the Prabha Sampath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir A. Kuznetsov

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge