Prabhat S. Kunwar
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prabhat S. Kunwar.
Nature | 2010
Wulf Haubensak; Prabhat S. Kunwar; Haijiang Cai; Stephane Ciocchi; Nicholas R. Wall; Ravikumar Ponnusamy; Jonathan Biag; Hong-Wei Dong; Karl Deisseroth; Edward M. Callaway; Michael S. Fanselow; Andreas Lüthi; David J. Anderson
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ− neurons in CEl. Electrical silencing of PKC-δ+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEloff units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing.
Development | 2003
Kathleen Molyneaux; Hélène Zinszner; Prabhat S. Kunwar; Kyle Schaible; Jürg Stebler; Mary Jean Sunshine; William O'Brien; Erez Raz; Dan R. Littman; Christopher Wylie; Ruth Lehmann
In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4-/- embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence.
eLife | 2015
Prabhat S. Kunwar; Moriel Zelikowsky; Ryan Remedios; Haijiang Cai; Melis Yilmaz; Markus Meister; David J. Anderson
Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers. DOI: http://dx.doi.org/10.7554/eLife.06633.001
Current Biology | 2004
Rui Gonçalo Martinho; Prabhat S. Kunwar; Jordi Casanova; Ruth Lehmann
RNApolII-dependent transcription is repressed in primordial germ cells of many animals during early development and is thought to be important for maintenance of germline fate by preventing somatic differentiation. Germ cell transcriptional repression occurs concurrently with inhibition of phosphorylation in the carboxy-terminal domain (CTD) of RNApolII, as well as with chromatin remodeling. The precise mechanisms involved are unknown. Here, we present evidence that a noncoding RNA transcribed by the gene polar granule component (pgc) regulates transcriptional repression in Drosophila germ cells. Germ cells lacking pgc RNA express genes important for differentiation of nearby somatic cells and show premature phosphorylation of RNApolII. We further show that germ cells lacking pgc show increased levels of K4, but not K9 histone H3 methylation, and that the chromatin remodeling Swi/Snf complex is required for a second stage in germ cell transcriptional repression. We propose that a noncoding RNA controls transcription in early germ cells by blocking the transition from preinitiation to transcriptional elongation. We further show that repression of somatic differentiation signals mediated by the Torso receptor-tyrosine kinase is important for germline development.
PLOS Biology | 2003
Prabhat S. Kunwar; Michelle Starz-Gaiano; Roland J. Bainton; Ulrike Heberlein; Ruth Lehmann
In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.
Journal of Cell Biology | 2008
Prabhat S. Kunwar; Hiroko Sano; Andrew D. Renault; Vitor Barbosa; Naoyuki Fuse; Ruth Lehmann
Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion.
Development | 2003
Prabhat S. Kunwar; Steven Zimmerman; James T. Bennett; Yu Chen; Malcolm Whitman; Alexander F. Schier
Transcription factors belonging to the FoxH1 and Mixer families are required for facets of Nodal signaling during vertebrate mesendoderm induction. Here, we analyze whether zebrafish proteins related to FoxH1 [Schmalspur (Sur)] and Mixer [Bonnie and clyde (Bon)] act within or downstream of the Nodal signaling pathway, test whether these two factors have additive or overlapping activities, and determine whether FoxH1/Sur and Mixer/Bon can account for all Nodal signaling during embryogenesis. We find that sur expression is independent of Nodal signaling and that bon is expressed in the absence of Nodal signaling but requires Nodal signaling and Sur for enhanced, maintained expression. These results and the association of FoxH1 and Mixer/Bon with phosphorylated Smad2 support a role for these factors as components of the Nodal signaling pathway. In contrast to the relatively mild defects observed in single mutants, loss of both bon and sur results in a severe phenotype characterized by absence of prechordal plate, cardiac mesoderm, endoderm and ventral neuroectoderm. Analysis of Nodal-regulated proteins reveals that Bon and Sur have both distinct and overlapping regulatory roles. Some genes are regulated by both Bon and Sur, and others by either Bon or Sur. Complete loss of Nodal signaling results in a more severe phenotype than loss of both Bon and Sur, indicating that additional Smad-associated transcription factors remain to be identified that act as components of the Nodal signaling pathway.
Nature | 2003
Prabhat S. Kunwar; Ruth Lehmann
Cells must often travel long distances to carry out their assigned tasks in the body. New work reveals how the precursors of eggs and sperm are guided during their epic journey to the gonads.
Development | 2010
Andrew D. Renault; Prabhat S. Kunwar; Ruth Lehmann
In Drosophila, germ cell survival and directionality of migration are controlled by two lipid phosphate phosphatases (LPP), wunen (wun) and wunen-2 (wun2). wun wun2 double mutant analysis reveals that the two genes, hereafter collectively called wunens, act redundantly in primordial germ cells. We find that wunens mediate germ cell-germ cell repulsion and that this repulsion is necessary for germ cell dispersal and proper transepithelial migration at the onset of migration and for the equal sorting of the germ cells between the two embryonic gonads during their migration. We propose that this dispersal function optimizes adult fecundity by assuring maximal germ cell occupancy of both gonads. Furthermore, we find that the requirement for wunens in germ cell survival can be eliminated by blocking germ cell migration. We suggest that this essential function of Wunen is needed to maintain cell integrity in actively migrating germ cells.
Developmental Biology | 2009
Andrew D. Renault; Sara Ricardo; Prabhat S. Kunwar; Ana C Santos; Michelle Starz-Gaiano; Jennifer A. Stein; Ruth Lehmann
In many species, the germ cells, precursors of sperm and egg, migrate during embryogenesis. The signals that regulate this migration are thus essential for fertility. In flies, lipid signals have been shown to affect germ cell guidance. In particular, the synthesis of geranylgeranyl pyrophosphate through the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (Hmgcr) pathway is critical for attracting germ cells to their target tissue. In a genetic analysis of signaling pathways known to affect cell migration of other migratory cells, we failed to find a role for the Hedgehog (Hh) pathway in germ cell migration. However, previous reports had implicated Hh as a germ cell attractant in flies and suggested that Hh signaling is enhanced through the action of the Hmgcr pathway. We therefore repeated several critical experiments and carried out further experiments to test specifically whether Hh is a germ cell attractant in flies. In contrast to previously reported findings and consistent with findings in zebrafish our data do not support the notion that Hh has a direct role in the guidance of migrating germ cells in flies.