Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pradeep Parrack is active.

Publication


Featured researches published by Pradeep Parrack.


Biochemical and Biophysical Research Communications | 2009

E. coli HflX interacts with 50S ribosomal subunits in presence of nucleotides

Nikhil Jain; Neha Dhimole; Abu Rafay Khan; Debojyoti De; Sushil Kumar Tomar; Mathew Sajish; Dipak Dutta; Pradeep Parrack; Balaji Prakash

HflX is a GTP binding protein of unknown function. Based on the presence of the hflX gene in hflA operon, HflX was believed to be involved in the lytic-lysogenic decision during phage infection in Escherichia coli. We find that E. coli HflX binds 16S and 23S rRNA – the RNA components of 30S and 50S ribosomal subunits. Here, using purified ribosomal subunits, we show that HflX specifically interacts with the 50S. This finding is in line with the homology of HflX to GTPases involved in ribosome biogenesis. However, HflX-50S interaction is not limited to a specific nucleotide-bound state of the protein, and the presence of any of the nucleotides GTP/GDP/ATP/ADP is sufficient. In this respect, HflX is different from other GTPases. While E. coli HflX binds and hydrolyses both ATP and GTP, only the GTP hydrolysis activity is stimulated by 50S binding. This work uncovers interesting attributes of HflX in ribosome binding.


FEBS Letters | 1999

Functional roles of the two cyclic AMP-dependent forms of cyclic AMP receptor protein from Escherichia coli

Jayanta Mukhopadhyay; Runa Sur; Pradeep Parrack

The cyclic AMP receptor protein activates transcription in Escherichia coli, only when complexed with cyclic AMP. The cyclic AMP receptor protein‐cyclic AMP complex formed at low concentrations of cyclic AMP has a different conformation from either cyclic AMP receptor protein alone or its complex with cyclic AMP formed at high cyclic AMP concentrations. Various biophysical data suggest that the latter complex resembles free cyclic AMP receptor protein. We have examined the conformational and biological properties of cyclic AMP receptor protein as a function of cyclic AMP concentrations, using the gal operon of E. coli. A biphasic behavior is observed. It is shown that only the complex formed at lower concentrations of cyclic AMP is the transcriptionally active form. This difference between the complexes at different levels of cyclic AMP arises from a decreased ability of the cyclic AMP receptor protein‐cyclic AMP complex at high cyclic AMP concentrations to bind to DNA at specific sites.


Journal of Bacteriology | 2009

Properties of HflX, an Enigmatic Protein from Escherichia coli

Dipak Kumar Dutta; Kaustav Bandyopadhyay; Ajit B. Datta; Abhijit A. Sardesai; Pradeep Parrack

The Escherichia coli gene hflX was first identified as part of the hflA operon, mutations in which led to an increased frequency of lysogenization upon infection of the bacterium by the temperate coliphage lambda. Independent mutational studies have also indicated that the HflX protein has a role in transposition. Based on the sequence of its gene, HflX is predicted to be a GTP-binding protein, very likely a GTPase. We report here purification and characterization of the HflX protein. We also specifically examined its suggested functional roles mentioned above. Our results show that HflX is a monomeric protein with a high (30% to 40%) content of helices. It exhibits GTPase as well as ATPase activities, but it has no role in lambda lysogeny or in transposition.


Journal of Bacteriology | 2007

Probing the Antiprotease Activity of λCIII, an Inhibitor of the Escherichia coli Metalloprotease HflB (FtsH)

Sabyasachi Halder; Ajit B. Datta; Pradeep Parrack

The CIII protein encoded by the temperate coliphage lambda acts as an inhibitor of the ubiquitous Escherichia coli metalloprotease HflB (FtsH). This inhibition results in the stabilization of transcription factor lambdaCII, thereby helping the phage to lysogenize the host bacterium. LambdaCIII, a small (54-residue) protein of unknown structure, also protects sigma(32), another specific substrate of HflB. In order to understand the details of the inhibitory mechanism of CIII, we cloned and expressed the protein with an N-terminal six-histidine tag. We also synthesized and studied a 28-amino-acid peptide, CIIIC, encompassing the central 14 to 41 residues of CIII that exhibited antiproteolytic activity. Our studies show that CIII exists as a dimer under native conditions, aided by an intersubunit disulfide bond, which is dispensable for dimerization. Unlike CIII, CIIIC resists digestion by HflB. While CIII binds to HflB, it does not bind to CII. On the basis of these results, we discuss various mechanisms for the antiproteolytic activity of CIII.


World Journal of Microbiology & Biotechnology | 2003

Arrowroot (Marantha arundinacea) starch as a new low-cost substrate for alkaline protease production

C. Ganesh Kumar; Pradeep Parrack

The feasibility of arrowroot (Marantha arundinacea) starch for alkaline protease production using an alkalophilic Bacillus lentus isolate was evaluated in batch fermentations in shake flasks and in a bioreactor under a range of conditions. A new arrowroot starch-casein medium (pH 10.2) was formulated having a composition (%, w/v): arrowroot starch 1, casein 1, sodium succinate 0.25, NH4Cl 0.05, NaCl 0.05, KH2PO4 0.04, K2HPO4 0.03, MgCl2 0.01, yeast extract 0.01 and Na2CO3 1.05. The isolate produced a maximum protease yield (6754.7 U ml−1) in this medium when grown for 72 h at 250 rev/min and 37 °C. Scaling-up studies in a bioreactor showed a 5-fold increase in alkaline protease yields (31899 U ml−1) at a lower production time of 45 h, aeration of 1 v/v/m and agitation of 400 rev/min at 37 °C.


World Journal of Microbiology & Biotechnology | 2003

Activated charcoal: a versatile decolorization agent for the recovery and purification of alkaline protease

C. Ganesh Kumar; Pradeep Parrack

The use of activated charcoal for enzyme recovery and purification was investigated and the optimum activated charcoal concentration and the minimum contact time needed for efficient decolorization of an alkaline protease preparation in terms of surface adsorption and retention of enzyme activity were found to be 7.5 g l−1 and 30 min, respectively. Elevated temperatures had a greater influence on the rate of decolorization which was faster when the protease was refluxed at 60 °C for 10–15 min. These data suggest that the efficient adsorption characteristics of activated charcoal can be exploited for cost-effective downstream processing of alkaline proteases and possibly other enzymes.


Archives of Biochemistry and Biophysics | 2010

HflD, an Escherichia coli protein involved in the λ lysis–lysogeny switch, impairs transcription activation by λCII

Pabitra K. Parua; Avisek Mondal; Pradeep Parrack

The CII protein of bacteriophage lambda is the key regulator for the lytic-lysogenic choice of the viral lifecycle. An unstable homotetrameric transcription activator of the three phage promoters p(E), p(I) and p(aQ), lambdaCII is stabilized by lambdaCIII and destabilized by the host protease, Escherichia coli HflB (FtsH). In addition, other E. coli proteins HflK, HflC and HflD also influence lysogeny by acting upon CII. Among these, HflD (22.9kDa), a peripheral membrane protein that is exposed towards the cytoplasm, interacts with CII and decreases the frequency of lysogenization of lambda by stimulating the degradation of CII. In this study, we show that in addition to helping CII degradation, HflD inhibits the DNA binding by CII, thereby inhibiting CII-dependent transcription activation. From biochemical, biophysical and modelling studies we also suggest that HflD-CII interaction takes place through the Cys31-accessible surface area of monomeric HflD, which binds to tetrameric CII as a 1:1 complex.


Journal of Bacteriology | 2014

Novel MntR-Independent Mechanism of Manganese Homeostasis in Escherichia coli by the Ribosome-Associated Protein HflX

Gursharan Kaur; Sandeepan Sengupta; Vineet Kumar; Aruna Kumari; Aditi Ghosh; Pradeep Parrack; Dipak Kumar Dutta

Manganese is a micronutrient required for activities of several important enzymes under conditions of oxidative stress and iron starvation. In Escherichia coli, the manganese homeostasis network primarily constitutes a manganese importer (MntH) and an exporter (MntP), which are regulated by the MntR dual regulator. In this study, we find that deletion of E. coli hflX, which encodes a ribosome-associated GTPase with unknown function, renders extreme manganese sensitivity characterized by arrested cell growth, filamentation, lower rate of replication, and DNA damage. We demonstrate that perturbation by manganese induces unprecedented influx of manganese in ΔhflX cells compared to that in the wild-type E. coli strain. Interestingly, our study indicates that the imbalance in manganese homeostasis in the ΔhflX strain is independent of the MntR regulon. Moreover, the influx of manganese leads to a simultaneous influx of zinc and inhibition of iron import in ΔhflX cells. In order to review a possible link of HflX with the λ phage life cycle, we performed a lysis-lysogeny assay to show that the Mn-perturbed ΔhflX strain reduces the frequency of lysogenization of the phage. This observation raises the possibility that the induced zinc influx in the manganese-perturbed ΔhflX strain stimulates the activity of the zinc-metalloprotease HflB, the key determinant of the lysis-lysogeny switch. Finally, we propose that manganese-mediated autophosphorylation of HflX plays a central role in manganese, zinc, and iron homeostasis in E. coli cells.


Cell & Bioscience | 2016

Universal minicircle sequence binding protein of Leishmania donovani regulates pathogenicity by controlling expression of cytochrome-b

Ruby Singh; Bidyut Purkait; Kumar Abhishek; Savita Saini; Sushmita Das; Sudha Verma; Abhishek Mandal; Ayan Kr. Ghosh; Yousuf Ansari; Ashish Kumar; Abul Hasan Sardar; Ajay Kumar; Pradeep Parrack; Pradeep Das

AbstractBackgroundLeishmania contains a concatenated mitochondrial DNA, kDNA. Universal minicircle sequence binding protein (UMSBP), a mitochondrial protein, initiates kDNA replication by binding with a conserved universal minicircle sequence (UMS) of kDNA. Here, we describe first time in L. donovani the regulation of DNA binding activity of UMSBP and the role of UMSBP in virulence.MethodsInsilco and EMSA study were performed to show UMS-binding activity of UMSBP. Tryparedoxin(TXN)-tryparedoxin peroxidase(TXNPx) assay as well as co-overexpression of cytochrome-b5 reductase-like protein (CBRL) and tryparedoxin in L. donovani were done to know the regulation of DNA binding activity of UMSBP. Knockout and episomal-expression constructs of UMSBP were transfected in L. donovani. The cell viability assay and immunofluorescence study to know the status of kDNA were performed. Macrophages were infected with transfected parasites. mRNA level of cytochrome b, activity of complex-III, intracellular ATP level of both transfected promastigotes and amastigotes as well as ROS concentration and the level of apoptosis of transfected promastigotes were measured. Level of oxidative phosphorylation of both transfected and un-transfected amastigotes were compared. Burden of transfected amastigotes in both macrophages and BALB/c mice were measured.ResultsL. donovani UMSBP is capable of binding with UMS, regulated by redox through mitochondrial enzymes, TXN, TXNPx and CBRL. Depletion of UMSBP (LdU−/−) caused kDNA loss, which decreased cytochrome-b expression [component of complex-III of electron transport chain (ETC)] and leads to the disruption of complex-III activity, decreased ATP generation, increased ROS level and promastigotes exhibited apoptosis like death. Interestingly, single knockout of UMSBP (LdU−/+) has no effect on promastigotes survival. However, single knockout in intracellular amastigotes demonstrate loss of mRNA level of cytochrome-b, disruption in the activity of complex-III and reduced production of ATP in amastigotes than wild type. This process interfere with the oxidative-phosphorylation and thereby completely inhibit the intracellular proliferation of LdU−/+ amastigotes in human macrophages and in BALB/c mice. Amastigotes proliferation was restored as wild type after episomal expression of LdUMSBP in LdU−/+ parasites (LdU−/+AB).ConclusionThe LdUMSBP regulates leishmanial mitochondrial respiration and pathogenesis. So, LdUMSBP may be an attractive target for rational drug designing and LdU−/+ parasites could be considered as a live attenuated vaccine candidate against visceral leishmaniasis.


Journal of General Virology | 2010

Specific hydrophobic residues in the α4 helix of λCII are crucial for maintaining its tetrameric structure and directing the lysogenic choice

Pabitra K. Parua; Ajit Bikram Datta; Pradeep Parrack

The CII protein of the temperate bacteriophage lambda is the decision-making factor that determines the viral lytic/lysogenic choice. It is a homotetrameric transcription activator that recognizes and binds specific direct repeat sequences TTGCN(6)TTGC in the lambda genome. The quaternary structure of CII is held by a four-helix bundle. It is known that the tetrameric organization of CII is necessary for its activity, but the molecular mechanism behind this requirement is not known. By specific site-directed mutagenesis of hydrophobic residues in the alpha4 helix of CII that constitutes the four-helix bundle, we found that residues leu70, val74 and leu78 were crucial for maintaining the tetrameric structure of the protein. When any of these residues was substituted by a polar one, CII lost its activity and failed to promote lysogeny. This loss of activity was accompanied by the inability of CII to form tetramers, to bind DNA or to activate transcription.

Collaboration


Dive into the Pradeep Parrack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajit B. Datta

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipak Kumar Dutta

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge