Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pradeep Shenoy is active.

Publication


Featured researches published by Pradeep Shenoy.


Journal of Neural Engineering | 2006

Towards adaptive classification for BCI

Pradeep Shenoy; Matthias Krauledat; Benjamin Blankertz; Rajesh P. N. Rao; Klaus-Robert Müller

Non-stationarities are ubiquitous in EEG signals. They are especially apparent in the use of EEG-based brain-computer interfaces (BCIs): (a) in the differences between the initial calibration measurement and the online operation of a BCI, or (b) caused by changes in the subjects brain processes during an experiment (e.g. due to fatigue, change of task involvement, etc). In this paper, we quantify for the first time such systematic evidence of statistical differences in data recorded during offline and online sessions. Furthermore, we propose novel techniques of investigating and visualizing data distributions, which are particularly useful for the analysis of (non-)stationarities. Our study shows that the brain signals used for control can change substantially from the offline calibration sessions to online control, and also within a single session. In addition to this general characterization of the signals, we propose several adaptive classification schemes and study their performance on data recorded during online experiments. An encouraging result of our study is that surprisingly simple adaptive methods in combination with an offline feature selection scheme can significantly increase BCI performance.


Journal of Neural Engineering | 2008

Control of a humanoid robot by a noninvasive brain-computer interface in humans

Christian J. Bell; Pradeep Shenoy; Rawichote Chalodhorn; Rajesh P. N. Rao

We describe a brain-computer interface for controlling a humanoid robot directly using brain signals obtained non-invasively from the scalp through electroencephalography (EEG). EEG has previously been used for tasks such as controlling a cursor and spelling a word, but it has been regarded as an unlikely candidate for more complex forms of control owing to its low signal-to-noise ratio. Here we show that by leveraging advances in robotics, an interface based on EEG can be used to command a partially autonomous humanoid robot to perform complex tasks such as walking to specific locations and picking up desired objects. Visual feedback from the robots cameras allows the user to select arbitrary objects in the environment for pick-up and transport to chosen locations. Results from a study involving nine users indicate that a command for the robot can be selected from four possible choices in 5 s with 95% accuracy. Our results demonstrate that an EEG-based brain-computer interface can be used for sophisticated robotic interaction with the environment, involving not only navigation as in previous applications but also manipulation and transport of objects.


international conference on data engineering | 2002

Exploiting local similarity for indexing paths in graph-structured data

Raghav Kaushik; Pradeep Shenoy; Philip Bohannon; Ehud Gudes

XML and other semi-structured data may have partially specified or missing schema information, motivating the use of a structural summary which can be automatically computed from the data. These summaries also serve as indices for evaluating the complex path expressions common to XML and semi-structured query languages. However, to answer all path queries accurately, summaries must encode information about long, seldom-queried paths, leading to increased size and complexity with little added value. We introduce the A(k)-indices, a family of approximate structural summaries. They are based on the concept of k-bisimilarity, in which nodes are grouped based on local structure, i.e., the incoming paths of length up to k. The parameter k thus smoothly varies the level of detail (and accuracy) of the A(k)-index. For small values of k, the size of the index is substantially reduced. While smaller, the A(k) index is approximate, and we describe techniques for efficiently extracting exact answers to regular path queries. Our experiments show that, for moderate values of k, path evaluation using the A(k)-index ranges from being very efficient for simple queries to competitive for most complex queries, while using significantly less space than comparable structures.


IEEE Transactions on Biomedical Engineering | 2008

Online Electromyographic Control of a Robotic Prosthesis

Pradeep Shenoy; Kai J. Miller; Beau Crawford; Rajesh P. N. Rao

This paper presents a two-part study investigating the use of forearm surface electromyographic (EMG) signals for real-time control of a robotic arm. In the first part of the study, we explore and extend current classification-based paradigms for myoelectric control to obtain high accuracy (92-98%) on an eight-class offline classification problem, with up to 16 classifications/s. This offline study suggested that a high degree of control could be achieved with very little training time (under 10 min). The second part of this paper describes the design of an online control system for a robotic arm with 4 degrees of freedom. We evaluated the performance of the EMG-based real-time control system by comparing it with a keyboard-control baseline in a three-subject study for a variety of complex tasks.


human factors in computing systems | 2008

Feasibility and pragmatics of classifying working memory load with an electroencephalograph

David B. Grimes; Desney S. Tan; Scott E. Hudson; Pradeep Shenoy; Rajesh P. N. Rao

A reliable and unobtrusive measurement of working memory load could be used to evaluate the efficacy of interfaces and to provide real-time user-state information to adaptive systems. In this paper, we describe an experiment we con-ducted to explore some of the issues around using an elec-troencephalograph (EEG) for classifying working memory load. Within this experiment, we present our classification methodology, including a novel feature selection scheme that seems to alleviate the need for complex drift modeling and artifact rejection. We demonstrate classification accuracies of up to 99% for 2 memory load levels and up to 88% for 4 levels. We also present results suggesting that we can do this with shorter windows, much less training data, and a smaller number of EEG channels, than reported previously. Finally, we show results suggesting that the models we construct transfer across variants of the task, implying some level of generality. We believe these findings extend prior work and bring us a step closer to the use of such technologies in HCI research.


The Journal of Neuroscience | 2013

Bayesian Prediction and Evaluation in the Anterior Cingulate Cortex

Jaime S. Ide; Pradeep Shenoy; Angela J. Yu; Chiang-shan R. Li

The dorsal anterior cingulate cortex (dACC) has been implicated in a variety of cognitive control functions, among them the monitoring of conflict, error, and volatility, error anticipation, reward learning, and reward prediction errors. In this work, we used a Bayesian ideal observer model, which predicts trial-by-trial probabilistic expectation of stop trials and response errors in the stop-signal task, to differentiate these proposed functions quantitatively. We found that dACC hemodynamic response, as measured by functional magnetic resonance imaging, encodes both the absolute prediction error between stimulus expectation and outcome, and the signed prediction error related to response outcome. After accounting for these factors, dACC has no residual correlation with conflict or error likelihood in the stop-signal task. Consistent with recent monkey neural recording studies, and in contrast with other neuroimaging studies, our work demonstrates that dACC reports at least two different types of prediction errors, and beyond contexts that are limited to reward processing.


IEEE Transactions on Biomedical Engineering | 2008

Generalized Features for Electrocorticographic BCIs

Pradeep Shenoy; Kai J. Miller; Jeffrey G. Ojemann; Rajesh P. N. Rao

This paper studies classifiability of electrocorticographic signals (ECoG) for use in a human brain-computer interface (BCI). The results show that certain spectral features can be reliably used across several subjects to accurately classify different types of movements. Sparse and nonsparse versions of the support vector machine and regularized linear discriminant analysis linear classifiers are assessed and contrasted for the classification problem. In conjunction with a careful choice of features, the classification process automatically and consistently identifies neurophysiological areas known to be involved in the movements. An average two-class classification accuracy of 95% for real movement and around 80% for imagined movement is shown. The high accuracy and generalizability of these results, obtained with as few as 30 data samples per class, support the use of classification methods for ECoG-based BCIs.


computer vision and pattern recognition | 2008

Combining brain computer interfaces with vision for object categorization

Ashish Kapoor; Pradeep Shenoy; Desney S. Tan

Human-aided computing proposes using information measured directly from the human brain in order to perform useful tasks. In this paper, we extend this idea by fusing computer vision-based processing and processing done by the human brain in order to build more effective object categorization systems. Specifically, we use an electroencephalograph (EEG) device to measure the subconscious cognitive processing that occurs in the brain as users see images, even when they are not trying to explicitly classify them. We present a novel framework that combines a discriminative visual category recognition system based on the pyramid match kernel (PMK) with information derived from EEG measurements as users view images. We propose a fast convex kernel alignment algorithm to effectively combine the two sources of information. Our approach is validated with experiments using real-world data, where we show significant gains in classification accuracy. We analyze the properties of this information fusion method by examining the relative contributions of the two modalities, the errors arising from each source, and the stability of the combination in repeated experiments.


Frontiers in Human Neuroscience | 2011

Rational Decision-Making in Inhibitory Control

Pradeep Shenoy; Angela J. Yu

An important aspect of cognitive flexibility is inhibitory control, the ability to dynamically modify or cancel planned actions in response to changes in the sensory environment or task demands. We formulate a probabilistic, rational decision-making framework for inhibitory control in the stop signal paradigm. Our model posits that subjects maintain a Bayes-optimal, continually updated representation of sensory inputs, and repeatedly assess the relative value of stopping and going on a fine temporal scale, in order to make an optimal decision on when and whether to go on each trial. We further posit that they implement this continual evaluation with respect to a global objective function capturing the various reward and penalties associated with different behavioral outcomes, such as speed and accuracy, or the relative costs of stop errors and go errors. We demonstrate that our rational decision-making model naturally gives rise to basic behavioral characteristics consistently observed for this paradigm, as well as more subtle effects due to contextual factors such as reward contingencies or motivational factors. Furthermore, we show that the classical race model can be seen as a computationally simpler, perhaps neurally plausible, approximation to optimal decision-making. This conceptual link allows us to predict how the parameters of the race model, such as the stopping latency, should change with task parameters and individual experiences/ability.


human factors in computing systems | 2008

Human-aided computing: utilizing implicit human processing to classify images

Pradeep Shenoy; Desney S. Tan

In this paper, we present Human-Aided Computing, an approach that uses an electroencephalograph (EEG) device to measure the presence and outcomes of implicit cognitive processing, processing that users perform automatically and may not even be aware of. We describe a classification system and present results from two experiments as proof-of-concept. Results from the first experiment showed that our system could classify whether a user was looking at an image of a face or not, even when the user was not explicitly trying to make this determination. Results from the second experiment extended this to animals and inanimate object categories as well, suggesting generality beyond face recognition. We further show that we can improve classification accuracies if we show images multiple times, potentially to multiple people, attaining well above 90% classification accuracies with even just ten presentations.

Collaboration


Dive into the Pradeep Shenoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela J. Yu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge