Pradoldej Sompol
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pradoldej Sompol.
Neuroscience | 2008
Pradoldej Sompol; Wanida Ittarat; Jitbanjong Tangpong; Yumin Chen; I. Doubinskaia; Ines Batinic-Haberle; Hafiz Mohmmad Abdul; D.A. Butterfield; D.K. St. Clair
Alzheimers disease (AD) is associated with beta-amyloid accumulation, oxidative stress and mitochondrial dysfunction. However, the effects of genetic mutation of AD on oxidative status and mitochondrial manganese superoxide dismutase (MnSOD) production during neuronal development are unclear. To investigate the consequences of genetic mutation of AD on oxidative damages and production of MnSOD during neuronal development, we used primary neurons from new born wild-type (WT/WT) and amyloid precursor protein (APP) (NLh/NLh) and presenilin 1 (PS1) (P264L) knock-in mice (APP/PS1) which incorporated humanized mutations in the genome. Increasing levels of oxidative damages, including protein carbonyl, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT), were accompanied by a reduction in mitochondrial membrane potential in both developing and mature APP/PS1 neurons compared with WT/WT neurons suggesting mitochondrial dysfunction under oxidative stress. Interestingly, developing APP/PS1 neurons were significantly more resistant to beta-amyloid 1-42 treatment, whereas mature APP/PS1 neurons were more vulnerable than WT/WT neurons of the same age. Consistent with the protective function of MnSOD, developing APP/PS1 neurons have increased MnSOD protein and activity, indicating an adaptive response to oxidative stress in developing neurons. In contrast, mature APP/PS1 neurons exhibited lower MnSOD levels compared with mature WT/WT neurons indicating that mature APP/PS1 neurons lost the adaptive response. Moreover, mature APP/PS1 neurons had more co-localization of MnSOD with nitrotyrosine indicating a greater inhibition of MnSOD by nitrotyrosine. Overexpression of MnSOD or addition of MnTE-2-PyP(5+) (SOD mimetic) protected against beta-amyloid-induced neuronal death and improved mitochondrial respiratory function. Together, the results demonstrate that compensatory induction of MnSOD in response to an early increase in oxidative stress protects developing neurons against beta-amyloid toxicity. However, continuing development of neurons under oxidative damage conditions may suppress the expression of MnSOD and enhance cell death in mature neurons.
The Journal of Neuroscience | 2012
Adam D. Bachstetter; Christopher M. Norris; Pradoldej Sompol; Donna M. Wilcock; Danielle S. Goulding; Janna H. Neltner; Daret K. St. Clair; D. Martin Watterson; Linda J. Van Eldik
Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimers disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that selectively attenuates proinflammatory cytokine production at low doses. MW-151 was tested in an APP/PS1 knock-in mouse model that exhibits increases in AD-relevant pathology progression with age, including increases in proinflammatory cytokine levels. Drug was administered during two distinct but overlapping therapeutic time windows of early stage pathology development. MW-151 treatment attenuated the increase in microglial and astrocyte activation and proinflammatory cytokine production in the cortex and yielded improvement in neurologic outcomes, such as protection against synaptic protein loss and synaptic plasticity impairment. The results also demonstrate that the therapeutic time window is an important consideration in efficacy studies of drugs that modulate glia biological responses involved in pathology progression and suggest that such paradigms should be considered in the development of new therapeutic regimens that seek to delay the onset or slow the progression of AD.
Food Chemistry | 2012
Yi-Fang Chu; Wen-Han Chang; Richard M. Black; Jia-Ren Liu; Pradoldej Sompol; Yumin Chen; Huilin Wei; Qiuyan Zhao; Irene H. Cheng
Alzheimers disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD.
Molecular Cancer Therapeutics | 2007
Yong Xu; Fang Fang; Daret K. St. Clair; Sajni Josson; Pradoldej Sompol; Ivan Spasojevic; William H. St. Clair
Nuclear factor-κB provides an adaptive response to protect cancer cells against cytotoxicity induced by redox active therapeutics. RelB is uniquely expressed at a high level in prostate cancer with high Gleason scores. Recently, we showed that the level of RelB rapidly increases in androgen-independent prostate cancer cells after exposure to ionizing radiation (IR), leading to a reduction in intrinsic radiosensitivity. Here, we show that interaction of 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3] with the vitamin D receptor significantly enhances radiosensitivity of prostate cancer cells at clinically relevant radiation doses. The radiosensitization effect of 1α,25-(OH)2D3 is mediated, at least in part, by selectively suppressing IR-mediated RelB activation, leading to a reduced expression of its target gene MnSOD, a primary antioxidant enzyme in mitochondria. These results suggest that suppression of manganese superoxide dismutase is a mechanism by which 1α,25-(OH)2D3 exerts its radiosensitization effect and that 1α,25-(OH)2D3 may serve as an effective pharmacologic agent for selectively sensitizing prostate cancer cells to IR via suppression of antioxidant responses in mitochondria. [Mol Cancer Ther 2007;6(7):2048–56]
Journal of Molecular Neuroscience | 2006
Pradoldej Sompol; Yong Xu; Wanida Ittarat; Chotiros Daosukho; Daret K. St. Clair
Expression of manganese superoxide dismutase (MnSOD), a nuclear-encoded mitochondrial primary antioxidant enzyme, is protective against various paradigms of oxidative stress-induced brain injury. We have shown previously that the presence of an intronic nuclear factor site, κB (NF-κB), in the MnSOD gene is essential for the induction of MnSOD by tumor necrosis factor α (TNF-α). However, whether activation of NF-κB is protective against oxidative stress-induced neuronal injury is unclear. In the present study, we demonstrate that TNF-α activates NF-κB activity in neuronal, SH-SY5Y, cells and preferentially enhances the binding of p50 and p65 to the promoter/enhancer regions of the MnSOD gene. Binding of NF-κB members to the MnSOD gene leads to the induction of MnSOD mRNA and protein levels. Consequently, induction of MnSOD by TNF-α primes neuronal cells to develop resistance against subsequent exposure to β-amyloid and FeSO4. Taken together, these results suggest that NF-κB might exert its protective function by induction of MnSOD leading to subsequent protection against oxidative stress-induced neuronal injury.
Molecular Cancer Therapeutics | 2008
Yong Xu; Fang Fang; Daret K. St. Clair; Pradoldej Sompol; Sajni Josson; William H. St. Clair
The activation of nuclear factor-κB (NF-κB) is thought to protect cancer cells against therapy-induced cytotoxicity. RelB, a member of the NF-κB family in the alternative pathway, is uniquely expressed at a high level in prostate cancer with high Gleason scores. Here, we show that ionizing radiation (IR) enhances nuclear import of RelB, leading to up-regulation of its target gene, manganese superoxide dismutase (MnSOD), and renders prostate cancer cells resistant to IR. To selectively block RelB nuclear import, we designed a cell-permeable SN52 peptide, a variant of the SN50 peptide that has been shown to block nuclear import of NF-κB family members in the classic pathway. Inhibition of IR-induced NF-κB activation by SN50 and SN52 was achieved by selectively interrupting the association of p50 and p52 with nuclear import factors importin-α1 and importin-β1. Importantly, SN52 seems to be more efficient for radiosensitization of prostate cancer cells at clinically relevant radiation doses and has less cytotoxicity to normal prostate epithelial cells compared with the toxicity observed with SN50. These results suggest that targeting the alternative pathway is a promising approach to selectively radiosensitize prostate cancers and that SN52 may serve as a prototype biological agent for sensitizing prostate cancers to clinically relevant doses of IR. [Mol Cancer Ther 2008;7(8):2367–76]
Neuroscience | 2008
Jitbanjong Tangpong; Pradoldej Sompol; Mary Vore; W. St. Clair; D.A. Butterfield; D.K. St. Clair
Tumor necrosis factor-alpha (TNF-alpha), a ubiquitous pro-inflammatory cytokine, is an important mediator in the immune-neuroendocrine system that affects the CNS. The present study demonstrates that treatment with TNF-alpha activates microglia to increase TNF-alpha production in primary cultures of glial cells isolated from wild-type (WT) mice and mice deficient in the inducible form of nitric oxide synthase (iNOSKO). However, mitochondrial dysfunction in WT neurons occurs at lower concentrations of TNF-alpha when neurons are directly treated with TNF-alpha or co-cultured with TNF-alpha-treated microglia than iNOSKO neurons similarly treated. Immunofluorescent staining of primary neurons co-cultured with TNF-alpha-treated microglia reveals that the antioxidant enzyme in mitochondria, manganese superoxide dismutase (MnSOD), is co-localized with nitrotyrosine in WT but not in iNOSKO primary neuronal cells. Importantly, the percentage of surviving neurons is significantly reduced in WT neurons compared with iNOSKO neurons under identical treatment conditions. Together, the results suggest that TNF-alpha activates microglia to produce high levels of TNF-alpha and that production of nitric oxide (NO) in neurons is an important factor affecting MnSOD nitration and subsequent mitochondrial dysfunction.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Pradoldej Sompol; Xia Liu; Kenkichi Baba; Ketema N. Paul; Gianluca Tosini; P. Michael Iuvone; Keqiang Ye
N-acetylserotonin (NAS), the immediate precursor of melatonin, the pineal gland indole, is regulated in a circadian rhythm. NAS swiftly activates TrkB in a circadian manner and exhibits antidepressant effect in a TrkB-dependent manner. Here we show that NAS regulates an early event of neurogenesis by increasing neuronal progenitor cell (NPC) proliferation. Subchronic and chronic NAS administration induces NPC proliferation in adult mice. Chronic NAS treatment triggers TrkB receptor activation and its downstream signaling in NPCs. Blockade of TrkB abolishes NAS-elicited neurogenesis in TrkBF616A knockin mice, suggesting that TrkB activation is essential for the effect of NAS-induced NPC proliferation. Moreover, NAS induces NPC proliferation in both active and sleeping phases of the mice. Strikingly, NAS significantly enhances NPC proliferation in sleep-deprived mice. Thus, our finding demonstrates a unique function of NAS in promoting robust NPC proliferation, which may contribute to hippocampal plasticity during sleeping period.
The Journal of Neuroscience | 2016
Jennifer L. Furman; Pradoldej Sompol; Susan D. Kraner; Melanie M. Pleiss; Esther J. Putman; Jacob Dunkerson; Hafiz Mohmmad Abdul; Kelly N. Roberts; Stephen W. Scheff; Christopher M. Norris
Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate gyrus. Blockade of the astrocytic CN/NFAT pathway in rats using adeno-associated virus (AAV) vectors expressing the astrocyte-specific promoter Gfa2 and the NFAT-inhibitory peptide VIVIT prevented the injury-related loss of basal CA1 synaptic strength and key synaptic proteins and reduced the susceptibility to induction of long-term depression. In conjunction with these seemingly beneficial effects, VIVIT treatment elicited a marked increase in the expression of the prosynaptogenic factor SPARCL1 (hevin), especially in hippocampal tissue ipsilateral to the CCI injury. However, in contrast to previous work on Alzheimers mouse models, AAV-Gfa2-VIVIT had no effects on the levels of GFAP and Iba1, suggesting that synaptic benefits of VIVIT were not attributable to a reduction in glial activation per se. Together, the results implicate the astrocytic CN/NFAT4 pathway as a key mechanism for disrupting synaptic remodeling and homeostasis in the hippocampus after acute injury. SIGNIFICANCE STATEMENT Similar to microglia, astrocytes become strongly “activated” with neural damage and exhibit numerous morphologic/biochemical changes, including an increase in the expression/activity of the protein phosphatase calcineurin. Using adeno-associated virus (AAV) to inhibit the calcineurin-dependent activation of the transcription factor NFAT (Nuclear Factor of Activated T cells) selectively, we have shown that activated astrocytes contribute to neural dysfunction in animal models characterized by progressive/chronic neuropathology. Here, we show that the suppression of astrocytic calcineurin/NFATs helps to protect synaptic function and plasticity in an animal model in which pathology arises from a single traumatic brain injury. The findings suggest that at least some astrocyte functions impair recovery after trauma and may provide druggable targets for treating victims of acute nervous system injury.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jianying Shen; Kanika Ghai; Pradoldej Sompol; Xia Liu; Xuebing Cao; P. Michael Iuvone; Keqiang Ye
N-acetylserotonin (NAS) is synthesized from serotonin by arylalkylamine N-acetyltransferase (AANAT), which is predominantly expressed in the pineal gland and retina. NAS activates TrkB in a circadian manner and exhibits antidepressant effects in a TrkB-dependent manner. It also enhances neurogenesis in hippocampus in sleep-deprived mice. Here we report the identification of NAS derivatives that possess much more robust neurotrophic effects with improved pharmacokinetic profiles. The compound N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC) selectively activates TrkB receptor with greater potency than NAS. It potently protects retinas from light-induced retinal degeneration (LIRD), which is tightly coupled with pronounced TrkB activation in retinas. Pharmacokinetic studies demonstrate that this compound is stable in serum and liver microsomes. It can pass the blood–brain barrier and blood–retinal barrier. Hence, HIOC is a good lead compound for further drug development for treating retinal degenerative diseases.