Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pragathi B. Shridhar is active.

Publication


Featured researches published by Pragathi B. Shridhar.


PLOS ONE | 2015

A Comparison of Culture- and PCR-Based Methods to Detect Six Major Non-O157 Serogroups of Shiga Toxin-Producing Escherichia coli in Cattle Feces.

Lance W. Noll; Pragathi B. Shridhar; Diana M. Dewsbury; Xiaorong Shi; Natalia Cernicchiaro; David G. Renter; T. G. Nagaraja

Culture-based methods to detect the six major non-O157 (O26, O45, O103, O111, O121 and O145) Shiga toxin-producing E. coli (STEC) are not well established. Our objectives of this study were to develop a culture-based method to detect the six non-O157 serogroups in cattle feces and compare the detection with a PCR method. Fecal samples (n = 576) were collected in a feedlot from 24 pens during a 12-week period and enriched in E. coli broth at 40° C for 6 h. Enriched samples were subjected to immunomagnetic separation, spread-plated onto a selective chromogenic medium, and initially pooled colonies, and subsequently, single colonies were tested by a multiplex PCR targeting six serogroups and four virulence genes, stx1, stx2, eae, and ehxA (culture method). Fecal suspensions, before and after enrichment, were also tested by a multiplex PCR targeting six serogroups and four virulence genes (PCR method). There was no difference in the proportions of fecal samples that tested positive (74.3 vs. 77.4%) for one or more of the six serogroups by either culture or the PCR method. However, each method detected one or more of the six serogroups in samples that were negative by the other method. Both culture method and PCR indicated that O26, O45, and O103 were the dominant serogroups. Higher proportions (P < 0.05) of fecal samples were positive for O26 (44.4 vs. 22.7%) and O121 (22.9 vs. 2.3%) serogroups by PCR than by the culture method. None of the fecal samples contained more than four serogroups. Only a small proportion of the six serogroups (23/640; 3.6%) isolated carried Shiga toxin genes. The culture method and the PCR method detected all six serogroups in samples negative by the other method, highlighting the importance of subjecting fecal samples to both methods for accurate detection of the six non-O157 STEC in cattle feces.


PLOS ONE | 2016

Escherichia coli O104 in Feedlot Cattle Feces: Prevalence, Isolation and Characterization.

Pragathi B. Shridhar; Lance W. Noll; Xiaorong Shi; Natalia Cernicchiaro; David G. Renter; Jianfa Bai; T. G. Nagaraja

Escherichia coli O104:H4, an hybrid pathotype of Shiga toxigenic and enteroaggregative E. coli, involved in a major foodborne outbreak in Germany in 2011, has not been detected in cattle feces. Serogroup O104 with H type other than H4 has been reported to cause human illnesses, but their prevalence and characteristics in cattle have not been reported. Our objectives were to determine the prevalence of E. coli O104 in feces of feedlot cattle, by culture and PCR detection methods, and characterize the isolated strains. Rectal fecal samples from a total of 757 cattle originating from 29 feedlots were collected at a Midwest commercial slaughter plant. Fecal samples, enriched in E. coli broth, were subjected to culture and PCR methods of detection. The culture method involved immunomagnetic separation with O104-specific beads and plating on a selective chromogenic medium, followed by serogroup confirmation of pooled colonies by PCR. If pooled colonies were positive for the wzxO104 gene, then colonies were tested individually to identify wzxO104-positive serogroup and associated genes of the hybrid strains. Extracted DNA from feces were also tested by a multiplex PCR to detect wzxO104-positive serogroup and associated major genes of the O104 hybrid pathotype. Because wzxO104 has been shown to be present in E. coli O8/O9/O9a, wzxO104-positive isolates and extracted DNA from fecal samples were also tested by a PCR targeting wbdDO8/O9/O9a, a gene specific for E. coli O8/O9/O9a serogroups. Model-adjusted prevalence estimates of E. coli O104 (positive for wzxO104 and negative for wbdDO8/O9/O9a) at the feedlot level were 5.7% and 21.2%, and at the sample level were 0.5% and 25.9% by culture and PCR, respectively. The McNemar’s test indicated that there was a significant difference (P < 0.01) between the proportions of samples that tested positive for wzxO104 and samples that were positive for wzxO104, but negative for wbdDO8/O9/O9a by PCR and culture methods. A total of 143 isolates, positive for the wzxO104, were obtained in pure culture from 146 positive fecal samples. Ninety-two of the 143 isolates (64.3%) also tested positive for the wbdDO8/O9/O9a, indicating that only 51 (35.7%) isolates truly belonged to the O104 serogroup (positive for wzxO104 and negative for wbdDO8/O9/O9a). All 51 isolates tested negative for eae, and 16 tested positive for stx1 gene of the subtype 1c. Thirteen of the 16 stx1-positive O104 isolates were from one feedlot. The predominant serotype was O104:H7. Pulsed-field gel electrophoresis analysis indicated that stx1-positive O104:H7 isolates had 62.4% homology to the German outbreak strain and 67.9% to 77.5% homology to human diarrheagenic O104:H7 strains. The 13 isolates obtained from the same feedlot were of the same PFGE subtype with 100% Dice similarity. Although cattle do not harbor the O104:H4 pathotype, they do harbor and shed Shiga toxigenic O104 in the feces and the predominant serotype was O104:H7.


Foodborne Pathogens and Disease | 2015

A Four-Plex Real-Time PCR Assay, Based on rfbE, stx1, stx2, and eae Genes, for the Detection and Quantification of Shiga Toxin–Producing Escherichia coli O157 in Cattle Feces

Lance W. Noll; Pragathi B. Shridhar; Xiaorong Shi; Baoyan An; Natalia Cernicchiaro; David G. Renter; T. G. Nagaraja; Jianfa Bai

Several real-time polymerase chain reaction (PCR) assays have been developed to detect and quantify Shiga toxin-producing Escherichia coli (STEC) O157:H7, but none have targeted the O-antigen specific gene (rfbEO157) in combination with the three major virulence genes, stx1, stx2, and eae. Our objectives were to develop and validate a four-plex, quantitative PCR (mqPCR) assay targeting rfbE(O157), stx1, stx2, and eae for the detection and quantification of STEC O157 in cattle feces, and compare the applicability of the assay to detect STEC O157 to a culture method and conventional PCR (cPCR) targeting the same four genes. Specificity of the mqPCR assay to differentially detect the four genes was confirmed with strains of O157 and non-O157 STEC with different profiles of target genes. In cattle feces spiked with pure cultures, detection limits were 2.8×10(4) and 2.8×10(0) colony-forming units/g before and after enrichment, respectively. Detection of STEC O157 in feedlot cattle fecal samples (n=278) was compared between mqPCR, cPCR, and a culture method. The mqPCR detected 48.9% (136/278) of samples as positive for E. coli O157. Of the 100 samples that were randomly picked from 136 mqPCR-positive samples, 35 and 48 tested positive by cPCR and culture method, respectively. Of the 100 samples randomly chosen from 142 mqPCR-negative samples, all were negative by cPCR, but 21 samples tested positive by the culture method. McNemars chi-square tests indicated significant disagreement between the proportions of positive samples detected by the three methods. In conclusion, the mqPCR assay that targets four genes is a novel and more sensitive method than the cPCR or culture method to detect STEC O157 in cattle feces. However, the use of real-time PCR as a screening method to identify positive samples and then subjecting only positive samples to a culture method may underestimate the presence of STEC O157 in fecal samples.


Journal of Food Protection | 2016

Multiplex Quantitative PCR Assays for the Detection and Quantification of the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces†

Pragathi B. Shridhar; Lance W. Noll; X. Shi; Baoyan An; Natalia Cernicchiaro; David G. Renter; T. G. Nagaraja; Jianfa Bai

Shiga toxin-producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, and O145, called non-O157 STEC, are important foodborne pathogens. Cattle, a major reservoir, harbor the organisms in the hindgut and shed them in the feces. Although limited data exist on fecal shedding, concentrations of non-O157 STEC in feces have not been reported. The objectives of our study were (i) to develop and validate two multiplex quantitative PCR (mqPCR) assays, targeting O-antigen genes of O26, O103, and O111 (mqPCR-1) and O45, O121, and O145 (mqPCR-2); (ii) to utilize the two assays, together with a previously developed four-plex qPCR assay (mqPCR-3) targeting the O157 antigen and three virulence genes (stx1, stx2, and eae), to quantify seven serogroups and three virulence genes in cattle feces; and (iii) to compare the three mqPCR assays to a 10-plex conventional PCR (cPCR) targeting seven serogroups and three virulence genes and culture methods to detect seven E. coli serogroups in cattle feces. The two mqPCR assays (1 and 2) were shown to be specific to the target genes, and the detection limits were 4 and 2 log CFU/g of pure culture-spiked fecal samples, before and after enrichment, respectively. A total of 576 fecal samples collected from a feedlot were enriched in E. coli broth and were subjected to quantification (before enrichment) and detection (after enrichment). Of the 576 fecal samples subjected, before enrichment, to three mqPCR assays for quantification, 175 (30.4%) were quantifiable (≥4 log CFU/g) for at least one of the seven serogroups, with O157 being the most common serogroup. The three mqPCR assays detected higher proportions of postenriched fecal samples (P > 0.01) as positive for one or more serogroups compared with cPCR and culture methods. This is the first study to assess the applicability of qPCR assays to detect and quantify six non-O157 serogroups in cattle feces and to generate data on fecal concentration of the six serogroups.


Journal of Food Protection | 2016

Pooling of Immunomagnetic Separation Beads Does Not Affect Detection Sensitivity of Six Major Serogroups of Shiga Toxin-Producing Escherichia coli in Cattle Feces.

Lance W. Noll; William C. Baumgartner; Pragathi B. Shridhar; Charley A. Cull; Diana M. Dewsbury; Xiaorong Shi; Natalia Cernicchiaro; David G. Renter; T. G. Nagaraja

Shiga toxin-producing Escherichia coli (STEC) of the serogroups O26, O45, O103, O111, O121, and O145, often called non-O157 STEC, are foodborne pathogens. Cattle are asymptomatic reservoirs for STEC; the organisms reside in the hindgut and are shed in the feces, which serve as the source of food product contaminations. Culture-based detection of non-O157 STEC involves an immunomagnetic separation (IMS) step to capture the specific serogroups in complex matrices, such as feces. The IMS procedure is time consuming and labor intensive because of the need to subject each fecal sample to six individual beads. Therefore, our objective was to evaluate whether pooling of IMS beads affects sensitivity of non-O157 STEC detection compared with using individual IMS beads. The evaluation was done by comparing detection of serogroups in feces spiked with pure cultures (experiments 1 and 2) and from feces (n = 384) of naturally shedding cattle (experiment 3). In spiked fecal samples, detection with pools of three, four, six, or seven beads was similar to, or at times higher than, detection with individual IMS beads. In experiment 3, the proportions of fecal samples that tested positive for the six serogroups as detected by individual or pooled beads were similar. Based on noninferiority tests, detection with pooled beads was not substantially inferior to detection with individual beads (P > 0.05). In conclusion, the pooling of IMS beads is a better option for detection of STEC serogroups in fecal samples compared with individual beads because the procedure saves time and labor and has the prospect of a higher throughput.


Journal of Food Protection | 2017

Spiral Plating Method To Quantify the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces

Pragathi B. Shridhar; Lance W. Noll; Charley A. Cull; Xiaorong Shi; Natalia Cernicchiaro; David G. Renter; Jianfa Bai; T. G. Nagaraja

Cattle are a major reservoir of the six major Shiga toxin-producing non-O157 Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) responsible for foodborne illnesses in humans. Besides prevalence in feces, the concentrations of STEC in cattle feces play a major role in their transmission dynamics. A subset of cattle, referred to as super shedders, shed E. coli O157 at high concentrations (≥4 log CFU/g of feces). It is not known whether a similar pattern of fecal shedding exists for non-O157. Our objectives were to initially validate the spiral plating method to quantify the six non-O157 E. coli serogroups with pure cultures and culture-spiked fecal samples and then determine the applicability of the method and compare it with multiplex quantitative PCR (mqPCR) assays for the quantification of the six non-O157 E. coli serogroups in cattle fecal samples collected from commercial feedlots. Quantification limits of the spiral plating method were 3 log, 3 to 4 log, and 3 to 5 log CFU/mL or CFU/g for individual cultures, pooled pure cultures, and cattle fecal samples spiked with pooled pure cultures, respectively. Of the 1,152 cattle fecal samples tested from eight commercial feedlots, 122 (10.6%) and 320 (27.8%) harbored concentrations ≥4 log CFU/g of one or more of the six serogroups of non-O157 by spiral plating and mqPCR methods, respectively. A majority of quantifiable samples, detected by either spiral plating (135 of 137, 98.5%) or mqPCR (239 of 320, 74.7%), were shedding only one serogroup. Only one of the quantifiable samples was positive for a serogroup carrying Shiga toxin (stx1) and intimin (eae) genes; 38 samples were positive for serogroups carrying the intimin gene. In conclusion, the spiral plating method can be used to quantify non-O157 serogroups in cattle feces, and our study identified a subset of cattle that was super shedders of non-O157 E. coli . The method has the advantage of quantifying non-O157 STEC, unlike mqPCR that quantifies serogroups only.


Frontiers in Cellular and Infection Microbiology | 2017

Shiga Toxin Subtypes of Non-O157 Escherichia coli Serogroups Isolated from Cattle Feces

Pragathi B. Shridhar; Chris Siepker; Lance W. Noll; Xiaorong Shi; T. G. Nagaraja; Jianfa Bai

Shiga toxin producing Escherichia coli (STEC) are important foodborne pathogens responsible for human illnesses. Cattle are a major reservoir that harbor the organism in the hindgut and shed in the feces. Shiga toxins (Stx) are the primary virulence factors associated with STEC illnesses. The two antigenically distinct Stx types, Stx1 and Stx2, encoded by stx1 and stx2 genes, share approximately 56% amino acid sequence identity. Genetic variants exist within Stx1 and Stx2 based on differences in amino acid composition and in cytotoxicity. The objective of our study was to identify the stx subtypes in strains of STEC serogroups, other than O157, isolated from cattle feces. Shiga toxin gene carrying E. coli strains (n = 192), spanning 27 serogroups originating from cattle (n = 170) and human (n = 22) sources, were utilized in the study. Shiga toxin genes were amplified by PCR, sequenced, and nucleotide sequences were translated into amino acid sequences using CLC main workbench software. Shiga toxin subtypes were identified based on the amino acid motifs that define each subtype. Shiga toxin genotypes were also identified at the nucleotide level by in silico restriction fragment length polymorphism (RFLP). Of the total 192 STEC strains, 93 (48.4%) were positive for stx1 only, 43 (22.4%) for stx2 only, and 56 (29.2%) for both stx1 and stx2. Among the 149 strains positive for stx1, 132 (88.6%) were stx1a and 17 (11.4%) were stx1c. Shiga toxin 1a was the most common subtype of stx1 among cattle (87.9%; 123/140) and human strains (100%; 9/9) of non-O157 serogroups. Of the total 99 strains positive for stx2, 79 were stx2a (79.8%), 11 (11.1%) were stx2c, 12 (12.1%) were stx2d. Of the 170 strains originating from cattle feces, 58 (34.1%) were stx2a subtype, 11 (6.5%) were stx2c subtype, and 11 were of subtype stx2d (6.5%). All but one of the human strains were positive for stx2a. Three strains of cattle origin were positive for both stx2a and stx2d. In conclusion, a number of non-O157 STEC serogroups harbored by cattle possess a wide variety of Shiga toxin subtypes, with stx1a and stx2a being the most predominant stx subtypes occurring individually or in combination. Cattle are a reservoir of a number of non-O157 STEC serogroups and information on the Shiga toxin subtypes is useful in assessing the potential risk as human pathogens.


Preventive Veterinary Medicine | 2018

Bayesian estimation of sensitivity and specificity of culture- and PCR-based methods for the detection of six major non-O157 Escherichia coli serogroups in cattle feces

Pius S. Ekong; Michael W. Sanderson; Pragathi B. Shridhar; Natalia Cernicchiaro; David G. Renter; Nora M. Bello; Jianfa Bai; T. G. Nagaraja

Non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC, O26, O45, O103, O111, O121, and O145) are foodborne pathogens of public health importance. Culture and PCR-based methods have been developed for the detection of these serogroups in cattle feces. The objectives of this study were to evaluate diagnostic sensitivity and specificity of PCR- and culture-based methods for the detection of the six non-O157 serogroups, and to estimate their true prevalence in cattle feces, using a Bayesian latent class modeling approach that accounts for conditional dependence among the three methods. A total of 576 fecal samples collected from the floor of pens of finishing feedlot cattle during summer 2013 were used. Fecal samples, suspended in E. coli broth, were enriched and subjected to three detection methods: culture (involving immunomagnetic separation with serogroup specific beads and plating on a selective medium), conventional (cPCR), and multiplex quantitative PCR (mqPCR) assays. Samples were considered serogroup positive if the sample or the recovered isolate tested positive by PCR for an O gene of interest; neither Shiga toxin (stx) nor intimin (eae) genes were assessed. Prior information on the performance of the three methods was elicited from three subject experts. Culture was generally the least sensitive and most specific of the 3 tests across serogroups, mqPCR was generally the most sensitive test and cPCR more specific than mqPCR. Sensitivity analysis indicated that posterior inferences on test performance and prevalence were susceptible to prior specification in cases where few or no detections present in the data for selected combinations of diagnostic methods (i.e. extreme category problem). Our results characterize performance of detection methods and true prevalence of non-O157 serogroups, thus informing necessary adjustments for test bias in risk modeling.


PLOS ONE | 2018

DNA microarray-based assessment of virulence potential of Shiga toxin gene-carrying Escherichia coli O104:H7 isolated from feedlot cattle feces

Pragathi B. Shridhar; Isha R. Patel; Jayanthi Gangiredla; Lance W. Noll; Xiaorong Shi; Jianfa Bai; Christopher A. Elkins; Nancy A. Strockbine; T. G. Nagaraja

Escherichia coli O104:H4, a hybrid pathotype reported in a large 2011 foodborne outbreak in Germany, has not been detected in cattle feces. However, cattle harbor and shed in the feces other O104 serotypes, particularly O104:H7, which has been associated with sporadic cases of diarrhea in humans. The objective of our study was to assess the virulence potential of Shiga toxin-producing E. coli (STEC) O104:H7 isolated from feces of feedlot cattle using DNA microarray. Six strains of STEC O104:H7 isolated from cattle feces were analyzed using FDA-E. coli Identification (ECID) DNA microarray to determine their virulence profiles and compare them to the human strains (clinical) of O104:H7, STEC O104:H4 (German outbreak strain), and O104:H21 (milk-associated Montana outbreak strain). Scatter plots were generated from the array data to visualize the gene-level differences between bovine and human O104 strains, and Pearson correlation coefficients (r) were determined. Splits tree was generated to analyze relatedness between the strains. All O104:H7 strains, both bovine and human, similar to O104:H4 and O104:H21 outbreak strains were negative for intimin (eae). The bovine strains were positive for Shiga toxin 1 subtype c (stx1c), enterohemolysin (ehxA), tellurite resistance gene (terD), IrgA homolog protein (iha), type 1 fimbriae (fimH), and negative for genes that code for effector proteins of type III secretory system. The six cattle O104 strains were closely related (r = 0.86–0.98) to each other, except for a few differences in phage related and non-annotated genes. One of the human clinical O104:H7 strains (2011C-3665) was more closely related to the bovine O104:H7 strains (r = 0.81–0.85) than the other four human clinical O104:H7 strains (r = 0.75–0.79). Montana outbreak strain (O104:H21) was more closely related to four of the human clinical O104:H7 strains than the bovine O104:H7 strains. None of the bovine E. coli O104 strains carried genes characteristic of E. coli O104:H4 German outbreak strain and unlike other human strains were also negative for Shiga toxin 2. Because cattle E. coli O104:H7 strains possess stx1c and genes that code for enterohemolysin and a variety of adhesins, the serotype has the potential to be a diarrheagenic foodborne pathogen in humans.


PLOS ONE | 2018

Comparative genomics reveals differences in mobile virulence genes of Escherichia coli O103 pathotypes of bovine fecal origin

Lance W. Noll; Jay N. Worley; Xun Yang; Pragathi B. Shridhar; Justin B. Ludwig; Xiaorong Shi; Jianfa Bai; Doina Caragea; Jianghong Meng; T. G. Nagaraja

Escherichia coli O103, harbored in the hindgut and shed in the feces of cattle, can be enterohemorrhagic (EHEC), enteropathogenic (EPEC), or putative non-pathotype. The genetic diversity particularly that of virulence gene profiles within O103 serogroup is likely to be broad, considering the wide range in severity of illness. However, virulence descriptions of the E. coli O103 strains isolated from cattle feces have been primarily limited to major genes, such as Shiga toxin and intimin genes. Less is known about the frequency at which other virulence genes exist or about genes associated with the mobile genetic elements of E. coli O103 pathotypes. Our objective was to utilize whole genome sequencing (WGS) to identify and compare major and putative virulence genes of EHEC O103 (positive for Shiga toxin gene, stx1, and intimin gene, eae; n = 43), EPEC O103 (negative for stx1 and positive for eae; n = 13) and putative non-pathotype O103 strains (negative for stx and eae; n = 13) isolated from cattle feces. Six strains of EHEC O103 from human clinical cases were also included. All bovine EHEC strains (43/43) and a majority of EPEC (12/13) and putative non-pathotype strains (12/13) were O103:H2 serotype. Both bovine and human EHEC strains had significantly larger average genome sizes (P < 0.0001) and were positive for a higher number of adherence and toxin-based virulence genes and genes on mobile elements (prophages, transposable elements, and plasmids) than EPEC or putative non-pathotype strains. The genome size of the three pathotypes positively correlated (R2 = 0.7) with the number of genes carried on mobile genetic elements. Bovine strains clustered phylogenetically by pathotypes, which differed in several key virulence genes. The diversity of E. coli O103 pathotypes shed in cattle feces is likely reflective of the acquisition or loss of virulence genes carried on mobile genetic elements.

Collaboration


Dive into the Pragathi B. Shridhar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfa Bai

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Xiaorong Shi

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Elkins

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isha R. Patel

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Jayanthi Gangiredla

Center for Food Safety and Applied Nutrition

View shared research outputs
Researchain Logo
Decentralizing Knowledge