Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. G. Nagaraja is active.

Publication


Featured researches published by T. G. Nagaraja.


Applied and Environmental Microbiology | 2010

Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet

Samodha C. Fernando; H. T. Purvis Ii; Fares Z. Najar; L. O. Sukharnikov; C. R. Krehbiel; T. G. Nagaraja; Bruce A. Roe; Udaya DeSilva

ABSTRACT High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change the rumen microbial population structure and help establish a stable microbial population within the rumen. Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Streptococcus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen microbial population using several molecular approaches and presents a broader picture of the rumen microbial population structure during adaptation to a high-grain diet from a forage diet.


Archive | 1997

Manipulation of ruminal fermentation

T. G. Nagaraja; C. J. Newbold; C. J. van Nevel; Daniël Demeyer

Ruminant animals have two metabolic systems that differ in their nutrient requirements: microbial metabolism in the rumen and mammalian metabolism in the tissues. Maximizing or optimizing ruminant productivity involves meeting requirements in proper amounts and balance for both metabolic systems. Ruminant nutritionists formulate diets with an intention of providing the animal with optimal levels of nutrients to achieve the optimal or maximal level of performance. Ideally, most of the dietary constituents should be digested, absorbed and utilized by the tissues as completely as possible. However, in reality, feed components are digested incompletely, more so with feedstuffs fed to ruminants than to non-ruminants. In ruminants, nutrient inputs are subjected first to fermentative digestion by microorganisms and then to glandular digestion by the host. Fermentative digestion is advantageous for substrates that cannot be digested by the host enzymes but is inefficient for digesting proteins, amino acids and sugars, because of losses in energy and nitrogen. Therefore, a proper balance between fermentative and glandular digestion needs to be achieved for optimal productivity.


Veterinary Research Communications | 1996

Fusobacterium necrophorum infections: Virulence factors, pathogenic mechanism and control measures

Z.L. Tan; T. G. Nagaraja; M. M. Chengappa

Fusobacterium necrophorum, a Gram-negative, non-spore-forming anaerobe, is a normal inhabitant of the alimentary tract of animals and humans. Two types of F. necrophorum, subspecies necrophorum (biotype A) and funduliforme (biotype B), have been recognized, which differ morphologically, biochemically, and biologically. The organism is an opportunistic pathogen that causes numerous necrotic conditions (necrobacillosis) such as bovine hepatic abscesses, ruminant foot abscesses and human oral infections. The pathogenic mechanism of F. necrophorum is complex and not well defined. Several toxins, such as leukotoxin, endotoxin, haemolysin, haemagglutinin and adhesin, have been implicated as virulence factors. Among these, leukotoxin and endotoxin are believed to be more important than other toxins in overcoming the hosts defence mechanisms to establish the infection. F. necrophorum is encountered frequently in mixed infections and, therefore, synergisms between F. necrophorum and other pathogens may play an important role in infection. Several investigators have attempted to induce protective immunity against F. necrophorum using bacterins, toxoids, and other cytoplasmic components. Generally, none of the immunogens has afforded statisfactory protection against Fusobacterium infections. Because of the unavailability of suitable immunoprophylaxis, the control of F. necrophorum infection has depended mainly on the use of antimicrobial compounds.


Journal of Microbiological Methods | 2010

A multiplex PCR procedure for the detection of six major virulence genes in Escherichia coli O157:H7.

Jianfa Bai; Xiaorong Shi; T. G. Nagaraja

A multiplex PCR procedure that detects six major virulence genes, fliC, stx1, stx2, eae, rfbE, and hlyA, in Escherichia coli O157:H7 was developed. Analyses of the available sequences of the six major virulence genes and the published primers allowed us to develop the six-gene, multiplex PCR protocol that maintained the specificity of each primer pair. The resulting six bands for fliC, stx1, stx2, eae, rfbE, and hlyA were even and distinct with product sizes of 949, 655, 477, 375, 296, and 199 bp, respectively. The procedure was validated with a total of 221 E. coli strains that included 4 ATCC, 84 cattle, and 57 human E. coli O157:H7 strains as well as 76 non-O157 cattle and human E. coli strains. The results of all 221 strains were similar to the results generated by established multiplex PCR methods that involved two separate reactions to detect five virulence genes (stx1, stx2, eae, fliC, and hlyA). Specificity of the O antigen was indicated by amplification of only O157, and not O25, O26, O55, O78, O103, O111, O127, and O145 E. coli serotypes. Sensitivity tests showed that the procedure amplified genes from a fecal sample spiked with a minimum of 10(4)CFU/g (10 cells/reaction) of E. coli O157. After a 6-h enrichment of E. coli O157-spiked samples, a sensitivity level of 10 CFU/g was achieved.


Journal of Animal Science | 2008

Effects of feeding wet corn distillers grains with solubles with or without monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne pathogenic and commensal bacteria in feedlot cattle.

M. E. Jacob; J. T. Fox; Sanjeev Narayanan; J. S. Drouillard; David G. Renter; T. G. Nagaraja

Distillers grains, a coproduct of ethanol production from cereal grains, are composed principally of the bran, protein, and germ fractions and are commonly supplemented in ruminant diets. The objective of this study was to assess the effect of feeding wet distillers grains with solubles (WDGS) and monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne and commensal bacteria in feedlot cattle. Cattle were fed 0 or 25% WDGS in steam-flaked corn-based diets with the addition of no antimicrobials, monensin, or monensin and tylosin. Fecal samples were collected from each animal (n = 370) on d 122 and 136 of the 150-d finishing period and cultured for Escherichia coli O157. Fecal samples were also pooled by pen (n = 54) and cultured for E. coli O157, Salmonella, commensal E. coli, and Enterococcus species. Antimicrobial resistance was assessed by determining antimicrobial susceptibilities of pen bacterial isolates and quantifying antimicrobial resistance genes in fecal samples by real-time PCR. Individual animal prevalence of E. coli O157 in feces collected from cattle fed WDGS was greater (P < 0.001) compared with cattle not fed WDGS on d 122 but not on d 136. There were no treatment effects on the prevalence of E. coli O157 or Salmonella spp. in pooled fecal samples. Antimicrobial susceptibility results showed Enterococcus isolates from cattle fed monensin or monensin and tylosin had greater levels of resistance toward macrolides (P = 0.01). There was no effect of diet or antimicrobials on concentrations of 2 antimicrobial resistance genes, ermB or tetM, in fecal samples. Results from this study indicate that WDGS may have an effect on the prevalence of E. coli O157 and the concentration of selected antimicrobial resistance genes, but does not appear to affect antimicrobial susceptibility patterns in Enterococcus and generic E. coli isolates.


Veterinary Microbiology | 2002

Leukotoxins of gram-negative bacteria.

Sanjeev Narayanan; T. G. Nagaraja; M. M. Chengappa; George C. Stewart

Leukotoxins are a group of exotoxins that produce their primary toxic effects against leukocytes, especially polymorphonuclear cells (PMNs). Leukotoxins include a variety of chemicals ranging from 9,10-epoxy 12-octadecenoate, a fatty acid derivative secreted by leukocytes themselves, to proteins such as RTX (repeats in toxin). This review focuses on leukotoxins of three species of gram-negative bacteria, Mannheimia (Pasteurella) haemolytica, Actinobacillus actinomycetemcomitans, and Fusobacterium necrophorum.


Journal of Animal Science | 2013

Board-invited review: Rumen microbiology: leading the way in microbial ecology.

D. O. Krause; T. G. Nagaraja; A. D. G. Wright; Todd R. Callaway

Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.


Applied and Environmental Microbiology | 2008

Effects of Dried Distillers' Grain on Fecal Prevalence and Growth of Escherichia coli O157 in Batch Culture Fermentations from Cattle†

Megan E. Jacob; J. T. Fox; James S. Drouillard; David G. Renter; T. G. Nagaraja

ABSTRACT Distillers’ grains (DG), a by-product of ethanol production, are fed to cattle. Associations between Escherichia coli O157 prevalence and feeding of DG were investigated in feedlot cattle (n = 379) given one of three diets: steam-flaked corn (SFC) and 15% corn silage with 0 or 25% dried distillers’ grains (DDG) or SFC with 5% corn silage and 25% DDG. Ten fecal samples were collected from each pen weekly for 12 weeks to isolate E. coli O157. Cattle fed 25% DDG with 5 or 15% silage had a higher (P = 0.01) prevalence of E. coli O157 than cattle fed a diet without DDG. Batch culture ruminal or fecal microbial fermentations were conducted to evaluate the effect of DDG on E. coli O157 growth. The first study utilized microbial inocula from steers fed SFC or dry-rolled corn with 0 or 25% DDG and included their diet as the substrate. Ruminal microbial fermentations from steers fed DDG had higher E. coli O157 contents than ruminal microbial fermentations from steers fed no DDG (P < 0.05) when no substrate was included. Fecal fermentations showed no DDG effect on E. coli O157 growth. In the second study with DDG as a substrate, ruminal fermentations with 0.5 g DDG had higher (P < 0.01) E. coli O157 concentrations at 24 h than ruminal fermentations with 0, 1, or 2 g DDG. In fecal fermentations, 2 g DDG resulted in a higher concentration (P < 0.05) at 24 h than 0, 0.5, or 1 g DDG. The results indicate that there is a positive association between DDG and E. coli O157 in cattle, and the findings should have important ramifications for food safety.


Foodborne Pathogens and Disease | 2009

Dietary interactions and interventions affecting Escherichia coli O157 colonization and shedding in cattle.

Megan E. Jacob; Todd R. Callaway; T. G. Nagaraja

Escherichia coli O157 is an important foodborne pathogen affecting human health and the beef cattle industry. Contamination of carcasses at slaughter is correlated to the prevalence of E. coli O157 in cattle feces. Many associations have been made between dietary factors and E. coli O157 prevalence in cattle feces. Preharvest interventions, such as diet management, could reduce the fecal prevalence and diminish the impact of this adulterant. Dietary influences, including grain type and processing method, forage quality, and distillers grains have all been associated with E. coli O157 prevalence. In addition, several plant compounds, including phenolic acids and essential oils, have been proposed as in-feed intervention strategies. The specific mechanisms responsible for increased or decreased E. coli O157 shedding or survival are not known but are often attributed to changes in hindgut ecology induced by diet types. Some interventions may have a direct bacterial effect. Frequently, results of studies are conflicting or not repeatable, which speaks to the complexity of the hindgut ecosystem, variation in animal feed utilization, and variation within feed products. Still, understanding specific mechanisms, driven by diet influences, responsible for E. coli O157 shedding will aid in the development and implementation of better and practical preharvest intervention strategies.


Vaccine | 2012

Efficacy of a vaccine and a direct-fed microbial against fecal shedding of Escherichia coli O157:H7 in a randomized pen-level field trial of commercial feedlot cattle

Charley A. Cull; Zachary Dean Paddock; T. G. Nagaraja; Nora M. Bello; A. H. Babcock; David G. Renter

Our primary objective was to determine the efficacy of a siderophore receptor and porin proteins-based vaccine (VAC) and a Lactobacillus acidophilus-based direct-fed microbial (DFM) against fecal shedding of Escherichia coli O157:H7 in commercial feedlot cattle fed a corn grain-based diet with 25% distillers grains. Cattle projected to be on a finishing diet during the summer were randomly allocated into 40 study pens within ten blocks based on allocation dates. Blocks were complete; each of the four pens within a block was randomly assigned one treatment: control, VAC, DFM, or VAC+DFM. The DFM was fed (10⁶CFU/animal/day of Lactobacillus) throughout the study periods (84-88 days) and cattle were vaccinated at enrollment and again three weeks later. Fresh fecal samples (30/pen) from pen floors were collected weekly for four consecutive weeks (study days 52-77). Two concurrent culture procedures were used to enable estimates of E. coli O157:H7 shedding prevalence and prevalence of high shedders. From 4800 total samples, 1522 (31.7%) were positive for E. coli O157:H7 and 169 (3.5%) were considered high shedders. Pen-level linear mixed models were used for data analyses. There were no significant interactions among treatments and time of sampling. However, vaccinated pens had lower (P<0.01) overall prevalence of E. coli O157:H7 (model-adjusted mean ± SEM=17.4 ± 3.95%) and lower (P<0.01) prevalence of high shedders (0.95 ± 0.26%) than unvaccinated pens (37.0 ± 6.32% and 4.19 ± 0.81%, respectively). There was no evidence of a DFM effect on either measure of E. coli O157:H7 shedding. Results indicate that a two-dose regimen of the vaccine significantly reduces fecal prevalence of E. coli O157:H7 (vaccine efficacy of 53.0%) and prevalence of E. coli O157:H7 high shedders (vaccine efficacy of 77.3%) in commercial feedlot cattle reared in the summer on a finishing diet with 25% distillers grains.

Collaboration


Dive into the T. G. Nagaraja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfa Bai

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaorong Shi

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

R.C. Cochran

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Shi

Kansas State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge