Prakasarao Aruna
Anna University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prakasarao Aruna.
Photochemistry and Photobiology | 2003
S. Madhuri; Nammalver Vengadesan; Prakasarao Aruna; Dornadula Koteeswaran; P. Venkatesan; Singaravelu Ganesan
Abstract Native fluorescence characteristics of blood plasma were studied in the visible spectral region, at two different excitation wavelengths, 405 and 420 nm, to discriminate patients with different stages of oral malignancy from healthy subjects. The fluorescence spectra of blood plasma of oral malignant subjects exhibit characteristic spectral differences with respect to normal subjects. Different ratios were calculated using the fluorescence intensity values at those emission wavelengths that give characteristic spectral features of each group of experimental subjects studied. These fluorescence intensity ratios were used as input variables for a multiple linear discriminant analysis across different groups. Leave-one out cross-validation was used to check the reliability of each discriminant analysis performed. The discriminant analysis performed across normal and oral cancerous subjects classified 94.7% of the original grouped cases and 93.7% of the cross-validated grouped cases. A classification algorithm was developed on the basis of the score of the discriminant functions (discriminant score) resulted in the analyses. The diagnostic potentiality of the present technique was also estimated in the discrimination of malignant subjects from normal and nonmalignant diseased subjects such as liver diseases. In the discriminant analysis performed across the three groups, normal, oral malignancy (including early and advanced stages) and liver diseases, 99% of the original grouped cases and 95.9% of the cross-validated grouped cases were correctly classified. Similar analysis performed across normal, early stage of oral malignancy, advanced oral malignancy and liver diseases correctly classified 94.9% of the original grouped cases and 91.8% of the cross-validated grouped cases.
Photochemistry and Photobiology | 2010
Jeyasingh Ebenezar; Prakasarao Aruna; Singaravelu Ganesan
The objective of this study was to assess the diagnostic potential of synchronous fluorescence (SF) spectroscopy (SFS) technique for the detection and characterization of normal and different malignancy stages of moderately differentiated squamous cell carcinoma (MDSCC), poorly differentiated squamous cell carcinoma (PDSCC) cervical tissues. SF spectra were measured from 45 biopsies from 30 patients in vitro. Characteristic, highly resolved peaks and significant spectral differences between normal and MDSCC, PDSCC cervical tissues were obtained. Nine potential ratios were calculated and used as input variables for a discriminant analysis across different groups. The potentiality of the SFS technique was estimated by two discriminant analyses. Discriminant analysis I performed across normal and abnormal (including MDSCC and PDSCC) cervical tissues classified as 100% both original and the cross‐validated grouped cases. In discriminant analysis II performed across the three groups, normal, MDSCC and PDSCC, 100% of both original and the cross‐validated grouped cases were correctly classified. Using the SFS technique, one can obtain all the key biochemical markers such as tryptophan, collagen, hemoglobin, reduced form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide in a single scan and hence they can be targeted as tumor markers in the detection of normal from abnormal cervical tissues.
Journal of Biomolecular Structure & Dynamics | 2016
Subramani Karthikeyan; Ganesan Bharanidharan; Manish Kesherwani; Karthik Ananth Mani; Narasimhan Srinivasan; D. Velmurugan; Prakasarao Aruna; Singaravelu Ganesan
4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl acetate [Ace semi],4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl propanoate [Pro semi] from the family of thiosemicarbazones derivative has been newly synthesized. It has good anticancer activity as well as antibacterial and it is also less toxic in nature, its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of thiosemicarbazone derivative to human serum albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance (r) between donor (HSA) and acceptor (thiosemicarbazone derivative) was estimated according to Forster’s theory of non-radiative energy transfer using fluorescence spectroscopy. The binding dynamics has been elaborated using synchronous fluorescence spectroscopy, and the feature of thiosemicarbazone derivative induced structural changes of HSA has been studied by circular dichorism, Fourier transform infrared spectroscopy. Molecular modelling simulations explore the hydrophobic interaction and hydrogen bonding which stabilizes the interaction.
Medical Physics | 2006
Chandra Sekaran Sureka; Prakasarao Aruna; Singaravelu Ganesan; Chirayath Sunil Sunny; K.V. Subbaiah
The present work is primarily focused on the estimation of relative dose distribution and effective transmission around a shielded vaginal cylinder with an 192Ir source using the Monte Carlo technique. The MCNP4B code was used to evaluate the dose distribution around a tungsten shielded vaginal cylinder as a function of thickness and angular shielding. The dose distribution and effective transmission of 192Ir by 0.8 cm thickness tungsten were also compared with that for gold and lead. Dose distributions were evaluated for different distances starting from 1.35 cm to 10.15 cm from the center of the cylinder. Dose distributions were also evaluated sequentially from 0 degrees to 180 degrees for every 5 degrees interval. Studies show that all the shielding material at 0.8 cm thickness contribute tolerable doses to normal tissues and also protect the critical organs such as the rectum and bladder. However, the computed dose values are in good agreement with the reported experimental values. It was also inferred that the higher the shielding angles, the more the protection of the surrounding tissues. Among the three shielding materials, gold has been observed to have the highest attenuation and hence contribute lowest transmission in the shielded region. Depending upon the shielding angle and thickness, it is possible to predict the dose distribution using the MCNP4B code. In order to deliver the higher dose to the unshielded region, lead may be considered as the shielding material and further it is highly economic over other materials.
Journal of Biomedical Optics | 2012
Jeyasingh Ebenezar; Singaravelu Ganesan; Prakasarao Aruna; Radhakrishnan Muralinaidu; Kannan Renganathan; Thillai Rajasekaran Saraswathy
Abstract. Fluorescence excitation spectroscopy (FES) is an emerging approach to cancer detection. The goal of this pilot study is to evaluate the diagnostic potential of FES technique for the detection and characterization of normal and cancerous oral lesions in vivo. Fluorescence excitation (FE) spectra from oral mucosa were recorded in the spectral range of 340 to 600 nm at 635 nm emission using a fiberoptic probe spectrofluorometer to obtain spectra from the buccal mucosa of 30 sites of 15 healthy volunteers and 15 sites of 10 cancerous patients. Significant FE spectral differences were observed between normal and well differentiated squamous cell carcinoma (WDSCC) oral lesions. The FE spectra of healthy volunteers consists of a broad emission band around 440 to 470 nm, whereas in WDSCC lesions, a new primary peak was seen at 410 nm with secondary peaks observed at 505, 540, and 580 nm due to the accumulation of porphyrins in oral lesions. The FE spectral bands of the WDSCC lesions resemble the typical absorption spectra of a porphyrin. Three potential ratios (I410/I505, I410/I540, and I410/I580) were calculated from the FE spectra and used as input variables for a stepwise linear discriminant analysis (SLDA) for normal and WDSCC groups. Leave-one-out (LOO) method of cross-validation was performed to check the reliability on spectral data for tissue characterization. The diagnostic sensitivity and specificity were determined for normal and WDSCC lesions from the scatter plot of the discriminant function scores. It was observed that diagnostic algorithm based on discriminant function scores obtained by SLDA–LOO method was able to distinguish WDSCC from normal lesions with a sensitivity of 100% and specificity of 100%. Results of the pilot study demonstrate that the FE spectral changes due to porphyrin have a good diagnostic potential; therefore, porphyrin can be used as a native tumor marker.
Journal of Biomolecular Structure & Dynamics | 2016
Subramani Karthikeyan; Ganesan Bharanidharan; Karthik Ananth Mani; Narasimhan Srinivasan; Manish Kesherwani; D. Velmurugan; Prakasarao Aruna; Singaravelu Ganesan
4-[3-acetyl-5-(acetylamino)-2,3-dihydro-1,3,4-thiadiazole-2-yl]phenyl benzoate from the family of thiadiazole derivative has been newly synthesized. It has good anticancer activity as well as antibacterial and less toxic in nature, its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of thiadiazole derivative to human serum albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance, r between the donor (HSA) and acceptor (thiadiazole derivative) was estimated according to Forster’s theory of non-radiative energy transfer. The Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) changes of temperature-dependent Kb was calculated, which explains that the reaction is spontaneous and exothermic. The microenvironment of HSA have also been studied using synchronous fluorescence spectroscopy, and the feature of thiadiazole derivative-induced structural changes of HSA have been carried using Fourier transform infrared spectroscopy and the Molecular modelling simulations explore the hydrophobic and hydrogen bonding interactions.
Physics in Medicine and Biology | 2007
C S Sureka; C. Sunil Sunny; K.V. Subbaiah; Prakasarao Aruna; Singaravelu Ganesan
An analysis of Ir-192 source distribution using the Monte Carlo method and radiochromic film experiments for endovascular brachytherapy is presented. Three different source possibilities, namely, mHDR Ir-192 sources with 5 mm and 2.5 mm step sizes and Ir-192 seed sources with 1 mm air gap are investigated to obtain uniform radial dose distribution throughout the treatment area. From this study, it is inferred that mHDR Ir-192 sources with 2.5 mm step size are effective for getting dose uniformity. Hence, different restenosis geometries, namely, linear, dumb bell and hairpin, are simulated with 2.5 mm step size, 15 mHDR Ir-192 sources using the Monte Carlo technique and the results are compared experimentally by using radiochromic films. The results from both methods agreed to within 7%. Further, it is also inferred that for the dosimetry of endovascular brachytherapy, the film dosimetry may be considered adequate, even if the film calibration is time consuming and requires adequate dosimetric procedures.
Journal of Biochemical and Molecular Toxicology | 2015
Subramani Karthikeyan; Shanmugavel Chinnathambi; Ayyavoo Kannan; Perumal Rajakumar; D. Velmurugan; Ganesan Bharanidharan; Prakasarao Aruna; Singaravelu Ganesan
A newly synthesized 1, 4‐bis ((4‐((4‐heptylpiperazin‐1‐yl) methyl)‐1H‐1, 2, 3‐triazol‐1‐yl) methyl) benzene from the family of piperazine derivative has good anticancer activity, antibacterial and low toxic nature; its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of piperazine derivative to bovine serum albumin (BSA) was investigated using fluorescence spectroscopy. The molecular distance r between the donor (BSA) and acceptor (piperazine derivative) was estimated according to Forsters theory of nonradiative energy transfer. The physicochemical properties of piperazine derivative, which induced structural changes in BSA, have been studied by circular dichroism and those chemical environmental changes were probed using Raman spectroscopic analysis. Further, the binding dynamics was expounded by synchronous fluorescence spectroscopy and molecular modeling studies explored the hydrophobic interaction and hydrogen bonding results, which stabilize the interaction.
Journal of Fluorescence | 2014
Ramu Rajasekaran; Prakasarao Aruna; Dornadula Koteeswaran; Munusamy Baludavid; Singaravelu Ganesan
Urine is one of the diagnostically potential bio fluids, as it contains many metabolites and some of them are native fluorophores. These fluorophores distribution and the physiochemical properties may vary during any metabolic change or at different pathologic conditions. Since urine is a multicomponent fluid, synchronous luminescence technique, a powerful tool has been adopted to analyse multicomponents in single spectrum and to resolve emission spectrum without much of photobleaching of fluorophores. In this study, urine samples of both normal subjects and cancer patients were characterised using synchronous luminescence spectroscopy with a Stokes shift of 20xa0nm. Different ratio parameters were calculated from the intensity values of the synchronous luminescence spectra and they were used as input variables for a multiple linear discriminant analysis across normal and cancer groups. The stepwise linear discriminant analysis classifies 90.3xa0% of the original grouped cases and 88.6xa0% of the cross-validated grouped cases correctly.
Journal of Nanoparticle Research | 2015
Rajendiran Mangaiyarkarasi; Shanmugavel Chinnathambi; Prakasarao Aruna; Singaravelu Ganesan
The luminescent lanthanide-doped nanoparticles have gathered considerable attention in many fields especially in biomedicine. In this work, the lanthanum fluoride-doped terbium nanoparticles (LaF3:Tb3+ NPs) via simple chemical precipitation method has been synthesized and functionalized with polyethylene glycol. The size and the shape of the nanoparticles are confirmed using X-ray diffraction and transmission electron microscopy. The conjugation of 5-Fluorouracil (5-FU) and thus synthesized nanoparticles (NPs) were confirmed using various spectroscopic methods such as UV–Visible spectroscopy, fluorescence steady state, and excited state spectroscopy studies. The enhancement in fluorescence emission (λxa0=xa0543xa0nm) of drug-conjugated nanoparticles confirms the Vander Waals force of attraction due to F–F bonding between the drug and the nanoparticles. Further, the effects of 5FU-NPs in carrier protein were investigated using bovine serum albumin as a protein model. The 5FU–LaF3:Tb3+ nanoparticles binding is illustrated with binding constant and number of binding sites. The structural change of bovine serum albumin has been studied using circular dichroism and Fourier transform infrared spectroscopy analysis.Graphical Abstract