Singaravelu Ganesan
Anna University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Singaravelu Ganesan.
Advanced Healthcare Materials | 2014
Shanmugavel Chinnathambi; Song Chen; Singaravelu Ganesan; Nobutaka Hanagata
Semiconductor nanoparticles (or quantum dots, QDs) exhibit unique optical and electronic properties such as size-controlled fluorescence, high quantum yields, and stability against photobleaching. These properties allow QDs to be used as optical labels for multiplexed imaging and in drug delivery detection systems. Luminescent silicon QDs and surface-modified silicon QDs have also been developed as potential minimally toxic fluorescent probes for bioapplications. Silicon, a well-known power electronic semiconductor material, is considered an extremely biocompatible material, in particular with respect to blood. This review article summarizes existing knowledge related to and recent research progress made in the methods for synthesizing silicon QDs, as well as their optical properties and surface-modification processes. In addition, drug delivery systems and in vitro and in vivo imaging applications that use silicon QDs are also discussed.
Photochemistry and Photobiology | 2003
S. Madhuri; Nammalver Vengadesan; Prakasarao Aruna; Dornadula Koteeswaran; P. Venkatesan; Singaravelu Ganesan
Abstract Native fluorescence characteristics of blood plasma were studied in the visible spectral region, at two different excitation wavelengths, 405 and 420 nm, to discriminate patients with different stages of oral malignancy from healthy subjects. The fluorescence spectra of blood plasma of oral malignant subjects exhibit characteristic spectral differences with respect to normal subjects. Different ratios were calculated using the fluorescence intensity values at those emission wavelengths that give characteristic spectral features of each group of experimental subjects studied. These fluorescence intensity ratios were used as input variables for a multiple linear discriminant analysis across different groups. Leave-one out cross-validation was used to check the reliability of each discriminant analysis performed. The discriminant analysis performed across normal and oral cancerous subjects classified 94.7% of the original grouped cases and 93.7% of the cross-validated grouped cases. A classification algorithm was developed on the basis of the score of the discriminant functions (discriminant score) resulted in the analyses. The diagnostic potentiality of the present technique was also estimated in the discrimination of malignant subjects from normal and nonmalignant diseased subjects such as liver diseases. In the discriminant analysis performed across the three groups, normal, oral malignancy (including early and advanced stages) and liver diseases, 99% of the original grouped cases and 95.9% of the cross-validated grouped cases were correctly classified. Similar analysis performed across normal, early stage of oral malignancy, advanced oral malignancy and liver diseases correctly classified 94.9% of the original grouped cases and 91.8% of the cross-validated grouped cases.
Scientific Reports | 2012
Shanmugavel Chinnathambi; Song Chen; Singaravelu Ganesan; Nobutaka Hanagata
The interaction of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) with Toll-like receptor 9 (TLR9) activates the immune system. Multimeric class A CpG ODNs induce interferon-α (IFN-α) and, to a lesser extent, interleukin-6. By contrast, monomeric class B CpG ODNs induce interleukin-6 but not IFN-α. This difference suggests that the multimerization of CpG ODN molecules is a key factor in IFN-α induction. We multimerized class B CpG ODN2006x3-PD molecules that consist entirely of a phosphodiester backbone onto quantum dot silicon nanoparticles with various binding modes. Herein, we present the binding mode–dependent bifurcation of cytokine induction and discuss its possible mechanism of CpG ODN and TLR9 interaction. Our discoveries also suggest that nanoparticles play roles in not only delivery of CpG ODNs but also control of CpG ODN activity.
Photochemistry and Photobiology | 2010
Jeyasingh Ebenezar; Prakasarao Aruna; Singaravelu Ganesan
The objective of this study was to assess the diagnostic potential of synchronous fluorescence (SF) spectroscopy (SFS) technique for the detection and characterization of normal and different malignancy stages of moderately differentiated squamous cell carcinoma (MDSCC), poorly differentiated squamous cell carcinoma (PDSCC) cervical tissues. SF spectra were measured from 45 biopsies from 30 patients in vitro. Characteristic, highly resolved peaks and significant spectral differences between normal and MDSCC, PDSCC cervical tissues were obtained. Nine potential ratios were calculated and used as input variables for a discriminant analysis across different groups. The potentiality of the SFS technique was estimated by two discriminant analyses. Discriminant analysis I performed across normal and abnormal (including MDSCC and PDSCC) cervical tissues classified as 100% both original and the cross‐validated grouped cases. In discriminant analysis II performed across the three groups, normal, MDSCC and PDSCC, 100% of both original and the cross‐validated grouped cases were correctly classified. Using the SFS technique, one can obtain all the key biochemical markers such as tryptophan, collagen, hemoglobin, reduced form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide in a single scan and hence they can be targeted as tumor markers in the detection of normal from abnormal cervical tissues.
Journal of Biomolecular Structure & Dynamics | 2016
Subramani Karthikeyan; Ganesan Bharanidharan; Manish Kesherwani; Karthik Ananth Mani; Narasimhan Srinivasan; D. Velmurugan; Prakasarao Aruna; Singaravelu Ganesan
4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl acetate [Ace semi],4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl propanoate [Pro semi] from the family of thiosemicarbazones derivative has been newly synthesized. It has good anticancer activity as well as antibacterial and it is also less toxic in nature, its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of thiosemicarbazone derivative to human serum albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance (r) between donor (HSA) and acceptor (thiosemicarbazone derivative) was estimated according to Forster’s theory of non-radiative energy transfer using fluorescence spectroscopy. The binding dynamics has been elaborated using synchronous fluorescence spectroscopy, and the feature of thiosemicarbazone derivative induced structural changes of HSA has been studied by circular dichorism, Fourier transform infrared spectroscopy. Molecular modelling simulations explore the hydrophobic interaction and hydrogen bonding which stabilizes the interaction.
Medical Dosimetry | 2003
V Sankaranarayanan; Singaravelu Ganesan; S Oommen; T.K Padmanaban; J Stumpf; Komanduri M Ayyangar
This study is an attempt to compare the dosimetric parameters of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery (SRS) using patient data. Radiosurgery was delivered through circular tertiary collimators attached to a linear accelerator. Six patients who were treated with SRS were replanned and evaluated with the IMRT planning system. Contouring of all structures, including target volume, was done on the IMRT system to closely match the SRS system. Treatment plans were generated after specifying the goals in the prescription module. The NOMOS BEAK collimator attached to the NOMOS MIMiC delivery device was chosen for treatment delivery. Various parameters such as conformity index, homogeneity index, target volume coverage, nontarget tissue, and brainstem doses were calculated and compared between the IMRT and SRS systems. Patient data were divided into 2 groups based on the complexity of the lesion and the number of isocenters used for radiosurgery. Analysis was done for each group and for the cumulative data. Superior conformality and homogeneous dose distribution in IMRT for multiple isocenter cases were observed. In addition, critical structure volumes for 50%, 70%, and 90% of the prescribed dose were lower in IMRT compared to SRS treatment. However, nontarget tissue received significantly higher doses with IMRT plans. Results show that IMRT treatment modality produces similar results as radiosurgery for small, spherical lesions, whereas it is found to be superior to SRS for irregular lesions in terms of critical structure sparing and better dose homogeneity.
Photochemistry and Photobiology | 2013
Ramu Rajasekaran; Prakash Rao Aruna; Dornadula Koteeswaran; Loganathan Padmanabhan; K. Muthuvelu; Ram Rathan Rai; Palraj Thamilkumar; Chilakapati Murali krishna; Singaravelu Ganesan
Urine is one of the diagnostically important bio fluids, as it has different metabolites in it, where many of them are native fluorophores. Native fluorescence characteristics of human urine samples were studied using excitation–emission matrices (EEMs) over a range of excitation and emission wavelengths, and emission spectra at 405 nm excitation, to discriminate patients with cancer from the normal subjects. The fluorescence spectra of urine samples of cancer patients exhibit considerable spectral differences in both EEMs and emission spectra with respect to normal subjects. Different ratios were calculated using the fluorescence intensity values of the emission spectra and they were used as input variables for a multiple linear discriminant analysis across different groups. The discriminant analysis classifies 94.7% of the original grouped cases and 94.1% of the cross‐validated grouped cases correctly. Based on the fluorescence emission characteristics of urine and statistical analysis, it may be concluded that the fluorophores nicotinamide adenine dinucleotide (NADH) and flavins may be considered as metabolomic markers of cancer.
International Journal of Nanomedicine | 2012
Yuvaraj Manoharan; Qingmin Ji; Tomohiko Yamazaki; Shanmugavel Chinnathambi; Song Chen; Singaravelu Ganesan; Jonathan P. Hill; Katsuhiko Ariga; Nobutaka Hanagata
Background Class B CpG oligodeoxynucleotides primarily interact with Toll-like receptor 9 (TLR9) in B cells and enhance the immune system through induction of various interleukins including interleukin-6 in these immune cells. Although free class B CpG oligodeoxynucleotides do not induce interferon (IFN)-α production, CpG oligodeoxynucleotide molecules have been reported to induce IFN-α when loaded onto nanoparticles. Here, we investigated the in vitro induction of IFN-α by a nanocarrier delivery system for class B CpG oligodeoxynucleotide molecules. Methods For improving the capacity to load CpG oligodeoxynucleotide molecules, flake-shell SiO2 nanoparticles with a specific surface area approximately 83-fold higher than that of smooth-surfaced SiO2 nanoparticles were prepared by coating SiO2 nanoparticles with polyethyleneimine (PEI) of three different number-average molecular weights (Mns 600, 1800, and 10,000 Da). Results The capacity of the flake-shell SiO2 nanoparticles to load CpG oligodeoxynucleotides was observed to be 5.8-fold to 6.7-fold higher than that of smooth-surfaced SiO2 nanoparticles and was found to increase with an increase in the Mn of the PEI because the Mn contributed to the positive surface charge density of the nanoparticles. Further, the flake-shell SiO2 nanoparticles showed much higher levels of IFN-α induction than the smooth-surfaced SiO2 nanoparticles. The highest IFN-α induction potential was observed for CpG oligodeoxynucleotide molecules loaded onto flake-shell SiO2 nanoparticles coated with PEI of Mn 600 Da, although the CpG oligodeoxynucleotide density was lower than that on flake-shell SiO2 nanoparticles coated with PEI of Mns 1800 and 10,000 Da. Even with the same density of CpG oligodeoxynucleotides on flake-shell SiO2 nanoparticles, PEI with an Mn of 600 Da caused a markedly higher level of IFN-α induction than that with Mns of 1800 Da and 10,000 Da. The higher TLR9-mediated IFN-α induction by CpG oligodeoxynucleotides on flake-shell SiO2 nanoparticles coated with a PEI of Mn 600 Da is attributed to residence of the CpG oligodeoxynucleotide molecules in endolysosomes.
Journal of Photochemistry and Photobiology B-biology | 2014
Manoharan Yuvaraj; Kanniyappan Udayakumar; Vadivel Jayanth; Aruna Prakasa Rao; Ganesan Bharanidharan; Dornadula Koteeswaran; Balu David Munusamy; Chilakapati Murali krishna; Singaravelu Ganesan
A pilot study has been carried out using human saliva in differentiating the normal subjects from that of oral squamous cell carcinoma (OSCC) patients, using the autofluorescence spectroscopy at 405nm excitation. A markable difference in the spectral signatures between the saliva of normal subjects and that of oral cancer patients has been noticed. The possible reasons for the altered spectral signature may be due to the presence of endogenous porphyrin, NAD(P)H and FAD in the exfoliated cells from saliva. The elevated level of porphyrin in saliva of OSCC patients may be attributed to the disturbances in the amino acid degradation pathway and heme biosynthetic pathway, during the transformation of normal into malignant cells. The integrated area under the curve of fluorescence emission spectrum at 405nm excitation and also fluorescence excitation spectrum for 625nm emission were compared for the saliva of normal and oral cancer patients. The area under the curve for the emission spectrum provides 85.7% sensitivity and 93.3% specificity, where as the fluorescence excitation spectrum discriminates the same with 84.1% sensitivity and 93.2% specificity.
Medical Physics | 2006
Chandra Sekaran Sureka; Prakasarao Aruna; Singaravelu Ganesan; Chirayath Sunil Sunny; K.V. Subbaiah
The present work is primarily focused on the estimation of relative dose distribution and effective transmission around a shielded vaginal cylinder with an 192Ir source using the Monte Carlo technique. The MCNP4B code was used to evaluate the dose distribution around a tungsten shielded vaginal cylinder as a function of thickness and angular shielding. The dose distribution and effective transmission of 192Ir by 0.8 cm thickness tungsten were also compared with that for gold and lead. Dose distributions were evaluated for different distances starting from 1.35 cm to 10.15 cm from the center of the cylinder. Dose distributions were also evaluated sequentially from 0 degrees to 180 degrees for every 5 degrees interval. Studies show that all the shielding material at 0.8 cm thickness contribute tolerable doses to normal tissues and also protect the critical organs such as the rectum and bladder. However, the computed dose values are in good agreement with the reported experimental values. It was also inferred that the higher the shielding angles, the more the protection of the surrounding tissues. Among the three shielding materials, gold has been observed to have the highest attenuation and hence contribute lowest transmission in the shielded region. Depending upon the shielding angle and thickness, it is possible to predict the dose distribution using the MCNP4B code. In order to deliver the higher dose to the unshielded region, lead may be considered as the shielding material and further it is highly economic over other materials.