Prasad Purohit
University at Buffalo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prasad Purohit.
Nature | 2007
Prasad Purohit; Ananya Mitra; Anthony Auerbach
Muscle contraction is triggered by the opening of acetylcholine receptors at the vertebrate nerve–muscle synapse. The M2 helix of this allosteric membrane protein lines the channel, and contains a ‘gate’ that regulates the flow of ions through the pore. We used single-molecule kinetic analysis to probe the transition state of the gating conformational change and estimate the relative timing of M2 motions in the α-subunit of the murine acetylcholine receptor. This analysis produces a ‘Φ-value’ for a given residue that reflects its open-like versus closed-like character at the transition state. Here we show that most of the residues throughout the length of M2 have a Φ-value of ∼0.64 but that some near the middle have lower Φ-values of 0.52 or 0.31, suggesting that αM2 moves in three discrete steps. The core of the channel serves both as a gate that regulates ion flow and as a hub that directs the propagation of the gating isomerization through the membrane domain of the acetylcholine receptor.
The Journal of General Physiology | 2007
Archana Jha; David J. Cadugan; Prasad Purohit; Anthony Auerbach
Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and function at the transmitter binding sites in the extracellular domain (ECD) with those at a “gate” in the transmembrane domain (TMD). We used Φ-value analysis to probe the relative timing of the gating motions of α-subunit residues located near the ECD–TMD interface. Mutation of four of the seven amino acids in the M2–M3 linker (which connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, changed the diliganded gating equilibrium constant (Keq) by up to 10,000-fold (P272 > I274 > A270 > G275). The average Φ-value for the whole linker was ∼0.64. One interpretation of this result is that the gating motions of the M2–M3 linker are approximately synchronous with those of much of M2 (∼0.64), but occur after those of the transmitter binding site region (∼0.93) and loops 2 and 7 (∼0.77). We also examined mutants of six cys-loop residues (V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed Keq by 2800-, 10-, and 18-fold, respectively, and with an average Φ-value of 0.74, similar to those of other cys-loop residues. Even though V132 and I274 are close, the energetic coupling between I and V mutants of these positions was small (≤0.51 kcal mol−1). The M2–M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those in TMD. These interactions are distributed along an ∼16-Å border and involve about a dozen residues.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Prasad Purohit; Anthony Auerbach
We estimated the unliganded opening and closing rate constants of neuromuscular acetylcholine receptor-channels (AChRs) having mutations that increased the gating equilibrium constant. For some mutant combinations, spontaneous openings occurred in clusters. For 25 different constructs, the unliganded gating equilibrium constant (E0) was correlated with the product of the predicted fold-increase in the diliganded gating equilibrium constant caused by each mutation alone. We estimate that (i) E0 for mouse, wild-type α2βδε AChRs is ≈1.15 × 10−7; (ii) unliganded AChRs open for ≈80 μs, once every ≈15 min; (iii) the affinity for ACh of the O(pen) conformation is ≈10 nM, or ≈15,600 times greater than for the C(losed) conformation; (iv) the ACh-monoliganded gating equilibrium constant is ≈1.7 × 10−3; (v) the C→O isomerization reduces substantially ACh dissociation, but only slightly increases association; and (vi) ACh provides only ≈0.9 kBT more binding energy per site than carbamylcholine but ≈3.1 kBT more than choline, mainly because of a low O conformation affinity. Most mutations of binding site residue αW149 increase E0. We estimate that the mutation αW149F reduces the ACh affinity of C only by 13-fold, but of O by 190-fold. Rate–equilibrium free-energy relationships for different regions of the protein show similar slopes (Φ values) for un- vs. diliganded gating, which suggests that the conformational pathway of the gating structural change is fundamentally the same with and without agonists. Agonist binding is a perturbation that (like most mutations) changes the energy, but not the mechanism, of the gating conformational change.
The Journal of General Physiology | 2007
Prasad Purohit; Anthony Auerbach
Charged residues in the β10–M1 linker region (“pre-M1”) are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational “wave.” We examined the effects of mutations to all five residues in pre-M1 (positions M207–P211) plus E45 in loop 2 in the mouse α1-subunit. M207, Q208, and P211 mutants caused small (approximately threefold) changes in the gating equilibrium constant (Keq), but the changes for R209, L210, and E45 were larger. Of 19 different side chain substitutions at R209 on the wild-type background, only Q, K, and H generated functional channels, with the largest change in Keq (67-fold) from R209Q. Various R209 mutants were functional on different E45 backgrounds: H, Q, and K (E45A), H, A, N, and Q (E45R), and K, A, and N (E45L). Φ values for R209 (on the E45A background), L210, and E45 were 0.74, 0.35, and 0.80, respectively. Φ values for R209 on the wt and three other backgrounds could not be estimated because of scatter. The average coupling energy between 209/45 side chains (six different pairs) was only −0.33 kcal/mol (for both α subunits, combined). Pre-M1 residues are important for expression of functional channels and participate in gating, but the relatively modest changes in closed- vs. open-state energy caused mutations, the weak coupling energy between these residues and the functional activity of several unmatched-charge pairs are not consistent with the perturbation of a salt bridge between R209 and E45 playing the principle role in gating.
The Journal of General Physiology | 2007
Prasad Purohit; Anthony Auerbach
Acetylcholine receptor channel gating is a brownian conformational cascade in which nanometer-sized domains (“Φ blocks”) move in staggering sequence to link an affinity change at the transmitter binding sites with a conductance change in the pore. In the α-subunit, the first Φ-block to move during channel opening is comprised of residues near the transmitter binding site and the second is comprised of residues near the base of the extracellular domain. We used the rate constants estimated from single-channel currents to infer the gating dynamics of Y127 and K145, in the inner and outer sheet of the β-core of the α-subunit. Y127 is at the boundary between the first and second Φ blocks, at a subunit interface. αY127 mutations cause large changes in the gating equilibrium constant and with a characteristic Φ-value (Φ = 0.77) that places this residue in the second Φ-block. We also examined the effect on gating of mutations in neighboring residues δI43 (Φ = 0.86), ɛN39 (complex kinetics), αI49 (no effect) and in residues that are homologous to αY127 on the ɛ, β, and δ subunits (no effect). The extent to which αY127 gating motions are coupled to its neighbors was estimated by measuring the kinetic and equilibrium constants of constructs having mutations in αY127 (in both α subunits) plus residues αD97 or δI43. The magnitude of the coupling between αD97 and αY127 depended on the αY127 side chain and was small for both H (0.53 kcal/mol) and C (−0.37 kcal/mol) substitutions. The coupling across the single α–δ subunit boundary was larger (0.84 kcal/mol). The Φ-value for K145 (0.96) indicates that its gating motion is correlated temporally with the motions of residues in the first Φ-block and is not synchronous with those of αY127. This suggests that the inner and outer sheets of the α-subunit β-core do not rotate as a rigid body.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Snehal V. Jadey; Prasad Purohit; Iva Bruhova; Timothy M. Gregg; Anthony Auerbach
Allosteric proteins use energy derived from ligand binding to promote a global change in conformation. The “gating” equilibrium constant of acetylcholine receptor-channels (AChRs) is influenced by ligands, mutations, and membrane voltage. We engineered AChRs to have specific values of this constant by combining these perturbations, and then calculated the corresponding values for a reference condition. AChRs were designed to have specific rate and equilibrium constants simply by adding multiple, energetically independent mutations with known effects on gating. Mutations and depolarization (to remove channel block) changed the diliganded gating equilibrium constant only by changing the unliganded gating equilibrium constant (E0) and did not alter the energy from ligand binding. All of the tested perturbations were approximately energetically independent. We conclude that naturally occurring mutations mainly adjust E0 and cause human disease because they generate AChRs that have physiologically inappropriate values of this constant. The results suggest that the energy associated with a structural change of a side chain in the gating isomerization is dissipated locally and is mainly independent of rigid body or normal mode motions of the protein. Gating rate and equilibrium constants are estimated for seven different AChR agonists using a stepwise engineering approach.
The Journal of General Physiology | 2013
Prasad Purohit; Anthony Auerbach
Agonist molecules at the two neuromuscular acetylcholine (ACh) receptor (AChR) transmitter-binding sites increase the probability of channel opening. In one hypothesis for AChR activation (“priming”), the capping of loop C at each binding site transfers energy independently to the distant gate over a discrete structural pathway. We used single-channel analyses to examine the experimental support for this proposal with regard to brief unliganded openings, the effects of loop-C modifications, the effects of mutations to residues either on or off the putative pathway, and state models for describing currents at low [ACh]. The results show that (a) diliganded and brief unliganded openings are generated by the same essential, global transition; (b) the radical manipulation of loop C does not prevent channel opening but impairs agonist binding; (c) both on- and off-pathway mutations alter gating by changing the relative stability of the open-channel conformation by local interactions rather than by perturbing a specific site–gate communication link; and (d) it is possible to estimate directly the rate constants for agonist dissociation from and association to both the low and high affinity forms of the AChR-binding site by using a cyclic kinetic model. We conclude that the mechanism of energy transfer between the binding sites and the gate remains an open question.
Nature Communications | 2013
Prasad Purohit; Shaweta Gupta; Snehal V. Jadey; Anthony Auerbach
Synaptic receptors are allosteric proteins that switch on and off to regulate cell signalling. Here, we use single-channel electrophysiology to measure and map energy changes in the gating conformational change of a nicotinic acetylcholine receptor. Two separated regions in the α-subunits--the transmitter-binding sites and αM2-αM3 linkers in the membrane domain--have the highest ϕ-values (change conformation the earliest), followed by the extracellular domain, most of the membrane domain and the gate. Large gating-energy changes occur at the transmitter-binding sites, α-subunit interfaces, the αM1 helix and the gate. We hypothesize that rearrangements of the linkers trigger the global allosteric transition, and that the hydrophobic gate unlocks in three steps. The mostly local character of side-chain energy changes and the similarly high ϕ-values of separated domains, both with and without ligands, suggest that gating is not strictly a mechanical process initiated by the affinity change for the agonist.
The Journal of General Physiology | 2010
Prasad Purohit; Anthony Auerbach
Acetylcholine receptor channels switch between conformations that have a low versus high affinity for the transmitter and conductance for ions (R↔R*; gating). The forward isomerization, which begins at the transmitter binding sites and propagates ∼50 Å to the narrow region of the pore, occurs by approximately the same sequence of molecular events with or without agonists present at the binding sites. To pinpoint the forces that govern the R versus R* agonist affinity ratio, we measured single-channel activation parameters for apo-receptors having combinations of mutations of 10 transmitter binding site residues in the α (Y93, G147, W149, G153, Y190, C192, and Y198), ε (W55 and P121), or δ (W57) subunit. Gating energy changes were largest for the tryptophan residues. The αW149 energy changes were coupled with those of the other aromatic amino acids. Mutating the aromatic residues to Phe reduces the R/R* equilibrium dissociation constant ratio, with αY190 and αW149 being the most sensitive positions. Most of the mutations eliminated long-lived spontaneous openings. The results provide a foundation for understanding how ligands trigger protein conformational change.
PLOS ONE | 2008
Pallavi A. Bafna; Prasad Purohit; Anthony Auerbach
Gating of nicotinic acetylcholine receptors from a C(losed) to an O(pen) conformation is the initial event in the postsynaptic signaling cascade at the vertebrate nerve-muscle junction. Studies of receptor structure and function show that many residues in this large, five-subunit membrane protein contribute to the energy difference between C and O. Of special interest are amino acids located at the two transmitter binding sites and in the narrow region of the channel, where C↔O gating motions generate a low↔high change in the affinity for agonists and in the ionic conductance, respectively. We have measured the energy changes and relative timing of gating movements for residues that lie between these two locations, in the C-terminus of the pore-lining M2 helix of the α subunit (‘αM2-cap’). This region contains a binding site for non-competitive inhibitors and a charged ring that influences the conductance of the open pore. αM2-cap mutations have large effects on gating but much smaller effects on agonist binding, channel conductance, channel block and desensitization. Three αM2-cap residues (αI260, αP265 and αS268) appear to move at the outset of channel-opening, about at the same time as those at the transmitter binding site. The results suggest that the αM2-cap changes its secondary structure to link gating motions in the extracellular domain with those in the channel that regulate ionic conductance.